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Abstract—Electrical network frequency (ENF) signals have
common patterns that can be used as signatures for identifying
recorded time and location of videos and sound. To enable cost-
efficient, reliable and scalable location inference, we created a
reference map of ENF signals representing hundreds of locations
world wide – extracting real-world ENF signals from online
multimedia streaming services (e.g., YouTube and Explore). Based
on this reference map of ENF signals, we propose a novel side-
channel attack that can identify the physical location of where
a target video or sound was recorded or streamed from. Our
attack does not require any expensive ENF signal receiver nor
any software to be installed on a victim’s device – all we need
is the recorded video or sound file to perform the attack. The
evaluation results show that our attack can infer the location of
the recorded audio files with an accuracy of 76% when those files
are 5 minutes or longer. We also showed that our proposed attack
works even when video and audio data are distorted through the
use of anonymous networks like Tor.

I. INTRODUCTION

With the increase in accessibility of high-speed Internet
across the world, many VoIP applications that allow people to
use voice and video chat online, such as Facebook messen-
ger [14], Skype [2], and WhatsApp [27], have emerged over
the years, and become popular. Also, many online streaming
services, such as YouTube [54], Facebook Live [13], Twitter’s
Periscope [47], and Twitch [45], have also become popular.

Such VoIP applications or streaming services, however,
may raise privacy concerns. As for VoIP applications, some
users, e.g., those engaged in secretive meetings, anonymous
reporting or those doing a secret chat in general, have to not
only anonymize their identities but also their locations even
when they do not perceive the location privacy threat because
they are not intentionally sharing their locations. Several pre-
vious studies [3], [16] demonstrated that location information
can reveal sensitive information about users. Therefore, some
services already tried to anonymize or obfuscate a user’s actual
location. For example, Skype, which is one of the most widely
used VoIP applications, recently updated its default application
settings to use a proxy server to hide users’ IP addresses [30].

Location privacy issues are also prevalent in streaming
services. The safety of those broadcasting and hosting live
shows at homes may be threatened because stalkers or poten-
tially inappropriate fans could locate their victims, and make
physical visits to the victims’ private places. Hence, most
streaming services might conceal not only content creators’
(or broadcasters’) IP addresses but also any other location-
related information about them. Popular streaming services like
Twitch already use an anonymity policy to hide users network
addresses for their privacy [46].

However, researchers have presented various ways of com-
promising location privacy. PowerSpy [36], for instance, is a
technique that can infer a mobile phone’s location with the
only measurement of the aggregate power consumption of
the phone. Furthermore, in another study on Android mobile
phone [37], it can also be inferred only by using sensors like
gyroscope, accelerometer and magnetometer without requiring
any permission.

In this paper, we propose a novel side-channel attack for
compromising user location based on a “Location Inference us-
ing SignaTures generated from Electric Network frequencies”
(LISTEN) technique. Unlike previous work [36], [37], [52] that
requires the installation of a specific malicious application on
a victim’s device, the LISTEN attack can be performed with
popular VoIP applications or online streaming services that are
already being used. In fact, the only piece needed to perform
the attack is a target multimedia file.

To implement the LISTEN attack, an attacker collects
electrical network frequency (ENF) signals transmitted from
a victim’s device via her microphone, and analyzes them to
infer the victim’s location. ENF is the supply frequency of
electrical power in electricity distribution networks. In general,
the ENF signals are mostly captured in a particular frequency,
either 50Hz or 60Hz. Moreover, the patterns of fluctuations
of ENF signals are very similar at time and space because
those patterns are highly influenced by the difference between
power supply and demand in the same power grid [21]. Since
the fluctuations have spatial and temporal characteristics, they
can be used as signatures to identify the victim’s temporal
location [21], [38], [20], [34], [26], [42], [5], [6].

The location identification techniques using the ENF sig-
nals have been intensively studied for several years. These
researches allow us to figure out which power grid the ENF
signals extracted from [24], [25], and also obtain the precise
location information within the grid [17], [23]. However, the
existing ENF processing techniques [17], [23] are not sufficient
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to implement the LISTEN attack.

In general, they failed to infer geographical location infor-
mation about a victim’s place in real-time. Furthermore, it was
not clear how the ENF signals should be well extracted from
audio and/or video streaming data used in VoIP applications
or streaming services, which is necessary for performing the
LISTEN attack in a practical setting.

In our work, we present a novel approach which can handle
these matters. We summarize our contributions as follows.

• We proposed a novel location privacy attack to infer
a victim’s location with the ENF signals extracted
from the multimedia streaming data transmitted for
VoIP applications or online streaming services. Our
ENF signal collection method is much cheaper than
existing approaches [31], [51], [7], [29] since we
merely collect audio signals from online streaming
services that contain the location information for the
recorded multimedia streaming data without using any
expensive hardware. Also, our attack does not assume
any additional malicious application being installed on
a victim’s device besides VoIP applications or client
applications for the target online streaming service.

• We collected a very large amount of real-world ENF
signals and constructed the first interpolated global
ENF map to infer user location. Our novel technique
enables efficient construction and continuous update
of a global ENF map, which is an integral piece
in facilitating wide coverage, and high accuracy and
practicality in location estimation. The interpolated
ENF map allows identification of previously undiscov-
ered locations while previous studies use classification
techniques to label user locations with reference to a
fixed set of known locations.

• We evaluated the performance of the proposed attack
in real-world environments without losing generosity.
Both theoretical parameters and realistic environments
for audio channels were used in the evaluation, show-
ing that our approach provides an accuracy of 90%
for inter-grid estimation with 40 minutes long audio,
and 76% of intra-grid estimation with 5 minutes long
audio when the portion of decision boundary area to
total grid is 3 out of n, where n denotes the number
of levels of a contour in a power grid.

The rest of the paper is organized as follows. In Section II,
we explain how ENF signals can be obtained from online mul-
timedia stream data and used for location tracking. Section III
describes the generic attack model, and Section IV dives deep
into the proposed LISTEN attack. Section V presents the attack
evaluation results, and Section VI discusses those results.
Related work is covered in Section VII and our conclusions
are in Section VIII.

II. BACKGROUND

This section explains the processes involved in extracting
ENF signals from online multimedia streaming services, and
in constructing a ENF map for locations of interest.

A. Electrical network frequency (ENF)

ENF is the supply frequency of electrical power in electric-
ity distribution networks. ENF signals are generally embedded
in a particular frequency by a stabilizer of power supply
systems [22]; either 50Hz or 60Hz frequency is used depending
on geographic location. Europe and China use 50Hz for AC
current, whereas the United States and Canada use 60Hz. In
the real world, however, small fluctuations of ENF signals
exist – this is because of the differences that exist between
power being supplied and the demand for power at a given
moment [21]. Such small variations that exist in ENF signals
have been exploited in many application domains including
abnormal event detection [7], electrical disturbances [22], [51],
[31], and digital forensics [21], [34], [41], [6], [26]. To
that end, many researchers have tried various ways to obtain
accurate ENF signals.

One way to acquire ENF signals is to use specialized
physical electrical devices such as a frequency disturbance
recorder (FDR), which is a type of phasor measurement unit
used in smart grids [56].

(a) ENF signal at base frequency

(b) ENF signal at base frequency and harmonic frequencies

Fig. 1. Spectrogram of an audio file with ENF signals. There are a few
couples of horizontal lines in spectrogram, which is called harmonic signals
of ENF.

ENF signals can also be obtained from side-channels such
as audio and video files [31], [51], [32], [21], [43] such
as Figure 1-(a). ENF patterns reconstructed from a side-
channel often have much lower signal-to-noise ratio (SNR)
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than those directly acquired from an FDR device. Therefore,
signal processing techniques needed to be applied to reduce
or remove unwanted noise when ENF signals are captured
from side-channels like audio or video streams. Figure 1-
(b) demonstrates the spectrogram of an audio file that was
recorded in Europe. This spectrogram is obtained using a short
time frequency transform (STFT) technique to capture non-
stationary ENF signals. As shown in this spectrogram, there ex-
ists a horizontal line around frequency of 50Hz. Additionally,
we can find several horizontal lines in the spectrogram shown
in Figure 1-(b), demonstrating similar ENF signal oscillation
patterns. Such signals are referred to as harmonic signals.
More accurate ENF signals can be acquired by processing ENF
signals at both base frequencies and harmonic frequencies1 on
the spectrogram [4], [25].

B. Extracting ENF signals from multimedia streaming data

To obtain reliable ENF signals, several signal processing
algorithms need to be applied to audio and video files. The
ENF signal extraction process mainly consists of the following
four steps.

1) Decimating and framing: Our extraction method in-
volves crawling and scraping audio and video files from online
multimedia services in real-time. An efficient data storage
mechanism is needed as the accumulated data sizes can quickly
become large, and scrapped multimedia streaming data might
not remain on streaming service servers. To save storage
space, and improve the efficiency of our crawling program,
we decimate collected audio signals to 1kHz before saving
them.

Using decimated signals, we create frames of data se-
quences, where each frame overlaps with the half of the
previous frame. Each frame contains 8192 samples, which
comes to about 8 seconds of decimated audio data in each
frame. 4096 samples overlap with each other. This concept
comes from the STFT technique.

Note that it is important to choose the optimal number
of samples to be included in one frame for extracting ENF
signals. If the frame size is too small, the frequency resolution
of each frame will also be too low to extract a meaningful
frequency value. If the frame size is too large, we could end up
with insufficient information being extracted from a given time
as signals become blurry. In this case, ENF signal variations
that exist in each frame will not be detected. This is called
the “uncertainty principle,” which is described in a research
conducted by Cooper et al [10].

2) Applying the quadratic interpolated fast Fourier trans-
form (QIFFT) technique: The next step involves applying the
QIFFT technique to each frame. It is necessary to improve
the resolution of ENF signal estimation when frame sizes are
small [23]. This step is designed to find the maximum value
of ENF signals from a given frequency of each frame. A band
pass filter is applied to truncate unnecessary frequency ranges
from a given frequency domain to obtain the maximum value.
We then apply the fast Fourier transformation (FFT) technique
to each frame, identifying the index of highest frequency

1Harmonic ENF signals are captured at frequencies that are calculated by
multiplying integer by base frequency [4].

Fig. 2. Constructing ENF signals with multi-tone estimation. (a) using the
base signal (60Hz); (b) using the base and from 2nd through 4th signals; (c)
using the base and from 2nd through 6th signals; (d) using the base and from
2nd through 8th signals.

value – this is done by tracing the maximum value, moving
from frame to frame. However, in this case, the maximum
(peak) spectra value estimation is less precise than resolution
estimation. If the sampling rate is denoted as fs, and the frame
size is denoted as n, then the unit value of each frequency
resolution will be fs/n. In our case, when fs = 1000, and
n = 8192, then the estimated ENF signal unit value would
roughly be 122mHz. Considering that the standard deviation
of ENF signals is approximately 20mHz [10], this estimation
is very imprecise. Hence, we apply the Quadratic Interpolation
technique when the FFT process is complete [10], [23], [39].
That is, we can search for interpolated peaks on the composed
spectra and links them using the QIFFT [1], [9] because the
computation of the STFT is too heavy to extract signals quickly
from hundreds of multimedia. The sampling rate should be
infinite in order to obtain the perfect maximum value, but since
it is impossible, we can get better estimation by approximating
the signal to quadratic formula with using values which are
nearby the maximum frequency value.

3) Multi-tone estimation: Initially, we would obtain ENF
signals such as shown in (a) of Figure 2. As can be seen, initial
ENF signals are highly corrupted due to unwanted noises. To
remove or reduce noise level, we apply multi-tone harmonic
signals to improve the quality of ENF signals [4], [10], [39].
The multi-tone harmonics method uses both a fundamental
frequency and harmonic frequencies for exploring the peak
position from the ENF spectrum. In this multi-tone harmon-
ics method, the maximum-likelihood estimation technique is
applied to the harmonic signals, using Cramer-Rao bound for
frequency estimation error. This process has been explained
by Bykhovsky et al [4], showing that the estimation accuracy
of ENF signals can be improved by about 10 − 15µHz [4].
Given a multimedia sound signal x(t) in a time domain, we can
transform the signal to F (ω) =

∑N−1
n=0 x(t)e−jωt in the fre-

quency domain. While ENF patterns exist around the 50/60Hz
band of a fundamental frequency, similar ENF patterns are
also present in harmonic frequency bands that are multiples of
50/60Hz. Therefore, to enhance the ENF patterns against the
unwanted uncorrelated noise in the frequency domain, multi-
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tone spectra is obtained by summing all spectrogram at both
fundamental and harmonic frequencies. Such improvements
can be seen in Figure 2. The more harmonic signals we use,
the better the accuracy of ENF signal estimation.

4) Threshold dependent median filter (TDMF): After
multi-tone estimation, we use the threshold dependent median
filter (TDMF) on the final ENF signal. A median filter is
a nonlinear filter that preserves the locality of signals being
processed. Median filters, compared to linear mean filter, are
more preferred way of reducing noise level.

Even if we use both multi-tone estimation and median
filter, we will not be able to identify maximum peaks (of ENF
signals) if given ENF signals are weak and have relatively low
spectra. Such weak ENF signals can be misleading, containing
severely abnormal noise levels. To remove abnormal noises, we
employ the threshold truncation approach – this approach is
called the threshold dependent median filter (TDMF).

III. THREAT MODEL

We assume that a service application is installed on the
victim’s device equipped with a built-in or attached ENF
capture device (e.g., AC microphone). The application has no
permission to access GPS or any other location information
(e.g., cellular base stations and WiFi APs). The installed
application is just used for capturing ENF signals from the
victim’s device and delivering the captured ENF signals to
the attacker’s device via the Internet. In this environment,
the attacker’s goal is to infer the victim’s geographic location
by analyzing the received ENF signals. The threat model of
LISTEN attacks is shown in Figure 3.

Fig. 3. Threat model of LISTEN attacks.

At first glance, our assumptions do not seem reasonable.
However, such environments appear to be often made in many
real-world situations. This is because ENF signals can be
extracted from recorded audio and/or video signals when the
recording device is mains-powered [21] which indicates the
status of being connected to a stable electrical power grid.
Note that mains-powered microphones are still popularly used
in multimedia streaming services to improve the sound quality
of recorded audio files. For instance, we found that about 36%
of Twitch users use mains-powered microphones. Therefore,
the attacker can collect the ENF signals generated from the
victim’s device if the application can just record the audio
and/or video signals at the victim’s device and access the
recorded audio signals.

In practice, the victim often shares her own user-created
contents with others through audio and video sharing sites
(e.g., YouTube, Facebook Live, Twitter’s Periscope, and

Twitch) by themselves. In such situations, ENF signal embed-
ded in audio and/or video signals can simply be downloaded
by anyone including the attacker.

Moreover, if the attacker communicates with the victim
using a VoIP application, the attacker can naturally record the
victim’s audio and/or video signals and receive them without
requiring any special permission on the victim’s device.

We note that our attack scenarios are likely to apply
even when network identifiers such as IP address are hidden
from the attacker through an anonymous system (e.g., Tor
network [35]) because the attacker does not require additional
information from the victim, besides the transmitted recorded
audio and/or video signals.

IV. LISTEN ATTACK

ENF signal patterns that appear in the distribution network
of a power plant are either 50Hz or 60Hz, depending on the
geographic location. Moreover, those ENF signal patterns have
temporal fluctuations based on the specific conditions of power
distribution. Because of those properties, ENF signals could be
used as a spatio-temporal signature for determining location
and time.

The primary goal of the LISTEN attack is to identify
the location of a victim device with access to just ENF
signals (side channel information). The attack consists of three
sequential processes as shown below.

1) Construction of the ENF map for locations of in-
terest. First process is about constructing a real-time
ENF map (this map is also referred to as ”the ENF
map” in the paper) by interpolating the unknown-ENF
area that will be used as ENF sequences to compare
against.

2) Extraction of reliable ENF signals from a target
device. The second process involves extracting and
processing ENF signals collected from a victim’s
device.

3) Location estimation. In the third process, the LIS-
TEN attack attempts to identify the victim’s location
by efficiently comparing the signals from the ENF
map against the victim’s ENF signals.

The following sections describe those three processes and
used algorithms in detail.

A. Construction of the ENF map for locations of interest

To construct a comprehensive map that can cover many
application domains, it is necessary to collect and process
ENF signals from a wide range of online streaming sources.
Ideally, we would need to cover all possible ENF ranges
across the entire world. However, building such a large ENF
map would require a massive effort and budget. Specialized
physical devices such as (FDR) [51] that can capture ENF
signals would need to be purchased, installed, and managed.
Deploying and continuously monitoring such physical devices
to cover all areas of interest is impractical and expensive.

In contrast, our approach does not require purchase and
installation of expensive physical devices. Our automated
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Fig. 4. A full procedure to construct the ENF map: the construction of the ENF map consists of three steps. We first collect audio and video streaming data
from online. Then we extract ENF patterns from the audio signals and the patterns are refined using advanced signal processing filters such as multi-tone &
QIFFT, TDMF and signal alignments. Finally, the ENF signals are used to interpolate the ENF patterns at unknown area.

programs crawl and scrap worldwide ENF signals from on-
line multimedia services such as “EarthCam” and “Ustream,”
significantly reducing costs, time, and amount of efforts needed
to create a map. However, more complicated signal processing
techniques need to be applied (to improve signal quality)
because ENF signals scraped from online sources are less clear.

The first step of LISTEN attack is to crawl and scrap audio
streams from a few pre-selected online multimedia services.
Audio and Video streams from some multimedia services
contain recording location information, including latitude and
longitude information. We chose Earthcam [12], Explore [15],
and Skyline [49] as the three online sources because both audio
and video data were produced with devices which are mains-
powered in Alternating current (AC).

The second step is to perform a series of signal processing
techniques: (1) checking scraped audio streams contain ENF
signals, (2) extracting clear signals through noise reduction,
and (3) aligning incomplete and partial signals on a given time
domain using signal alignment techniques. Those techniques
are described in Section IV-D. Accurate ENF signals can be
obtained after this step.

However, another problem is that we can only collect
ENF signals from a fixed set of streaming source locations.
We would miss signals from locations for which the selected
services do not stream audio and video. One possible solution
to this problem is signal interpolation. ENF signals from un-
covered areas are reconstructed by interpolation with collected
neighboring ENF signals. We refer to collected ENF signals as
anchor nodes (this word is also referred to as ”anchor node” in
the paper), and use them as the sources for interpolation. This
step allows us to infer precise locations from a victim’s ENF
signals by comparing them against interpolated ENF signals.
More details are described in Section IV-C2.

The effectiveness of an interpolated ENF map can be
explained theoretically from the fact that the ENF disturbance
propagation speed is finite [23], [17], which means that all the
inner grid ENF values will not be measured as the same value.
Based on those characteristics, we can infer the location of a
given ENF signal by going through the previously collected
database of ENF signal signatures and known locations, and
finding a signal that has the most similar pattern.

Before interpolation, we virtually divide the entire ENF
map by 0.1 degree; as a result, each cell size becomes 0.1
by 0.1 degree. We then apply the Inverse Distance Weighted
(IDW) interpolation technique to each cell using the values of
sampled points [33]. The simple weighted interpolation value ŷ
can be expressed by ŷ = Σλiyi, where yi represents evaluated
values from anchor nodes, and λi represents weight of each
point. The inverse distance weight implies that λi values are
inversely proportional to distance values. Experimentally, we
simulated the optimal order of 2 with cross-validation. Based
on that λ can be expressed as λ = d−p

i /Σd−p
i , where di is

the Euclidean distance between two signals from victim and
anchor nodes. The final, interpolated ENF map is shown in
Figure 5.

Fig. 5. Interpolated ENF signal sequence of the Europe continent. We can
estimate any point in an ENF sequence using a series of interpolated matrix
of ENF map.

Before building our LISTEN scheme, one of the most
important prior steps is to validate the effectiveness of the
interpolated ENF map because LISTEN cannot work without
an accurate ENF map. Since ENF map is built through IDW
interpolation, we performed to verify the availability of the
IDW interpolation by optimizing the unknown p to minimize
the error of IDW using 4 fold cross-validation and showing the
similarity between the constructed ENF map and the ground-
truth data collected from the FNET/GridEye server [22]. The
data was randomly partitioned into into 4 sub-samples and
labeled into two groups: a training set and a testing set. With
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this partitioned dataset, 4 fold cross-validation was adopted by
using ML (Maximum Likelihood) estimate in order to estimate
the optimal p which is a critical model parameter of IDW in-
terpolation. To prove the availability of the IDW interpolation,
we also used a similarity metric to compare the constructed
ENF map with the ground-truth data. The similarity was
obtained by calculating the normalized cross correlation (NCC)
between interpolated ENF signals and underlying ground-truth
ENF signals collected from the FNET/GridEye server. In this
comparison, the expectation and standard deviation of the
cross-validation are 0.7 and 0.1, respectively, with 40 minutes
long stream data.

B. Extracting ENF signals from a victim

After creating the ENF map, the next process is to set
a target victim, and extract ENF signals from the victim’s
device or recorded voice. This process is similar to the way
the ENF signals are collected in Section IV-A but requires
more sophisticated algorithms due to various communication
systems and environments that need to be considered. For
instance, the victim could be using a VoIP service that streams
unreliable ENF signals as shown in Figure 6. Such signals
could be distorted and carry a significant level of noise.

Fig. 6. Architecture for audio streaming over IP network for VoIP applications
and online streaming services. Reliable data for constructing a ENF map is
collected from an online streaming service; sound recorded from a victim’s
device is received on an audio channel where packet loss may exist.

Signal distortion could occur when an audio signal goes
through an audio codec or QoS mechanism as shown in
Figure 6. Severely distorted ENF signals cannot be used for
location estimation. Hence, the state of the audio channel need
to be specified concretely based on the “frequency response,”
“time delay,” “delay jitter,” and “packet loss.” These represent
the quantified metrics for evaluating the quality of audio chan-
nels.In following paragraphs, we describe about those metrics
and the techniques how attackers mitigate those problem.

1) Frequency response: We first check frequency response,
which includes a band pass filter. Audio recorded from the
victim’s device can be filtered or amplified when it passes
through an audio channel. ENF signals cannot be reconstructed
from such an audio file if (for some reason) the victim’s ENF
signals are deleted.

As human audible frequency ranges from 20Hz to 20kHz,
many audio codec standards include a band pass filter for better
compression and higher quality given a limited data rate [28].
For example, in the case of Skype, the VoIP application uses
its own codec called SILK [50]. The compression process of

SILK uses a high pass filter for which the cut-off frequency
is 70Hz [50]. Since the base frequency of ENF signal is 50 or
60Hz, SILK will filter it. Only the remaining harmonic signals
that pass the band pass filter will be made available.

To resolve this, we use the multi-tone estimation [44]
shown in Section IV-A. Multi-tone estimation is enhancing
the signals of our interest by combining multiple signals at
fundamental frequency and harmonic frequencies as shown in
Figure 2. We use harmonic signals with frequency of either
100Hz for the 1st frequency 50Hz or 120Hz for the 1st
frequency 60Hz, or above.

2) Time delay and delay jitter: Since we compare the
victim’s ENF signals against the ENF map based on known
locations (signatures), we need to know the exact time of ENF
signal extraction. Hence, any time delay is integral and needs
to be known. If a VoIP uses a signaling protocol that provides
the exact time delay information, the recorded time can be
obtained easily. However, there might be some cases that the
exact time is hard to find. In such cases, we have to estimate the
time delay by calculating normalized correlation coefficient of
extracted ENF signals from target node and those from anchor
nodes. At the exact temporal alignment, the cross-correlation
coefficient will have the highest value. This calculation must
be performed approximately every eight seconds before ENF
signals are framed. Here, each frame has 8, 192 samples.

Jitter, which is packet delay variation, is also one of the
metrics of quality of audio channels. Jitter occurs when VoIP
delay changes frequently: a sender transmits packets at a
regular interval but a receiver receives packets irregularly. It is
known that audio codecs in VoIPs or streaming services can
reduce jitter [28]. Since this jitter reduction incurs its own
time delay, aligning time against time delay is a only concern.

3) Packet loss: Packet loss is another important factor since
ENF signals cannot be reconstructed with loss of information.
If a service uses a reliable protocol, we can request for a
’packet resend’ to a server when packet loss is detected.
Otherwise, missing data cannot be restored. In particular, real-
time voice chat services often use P2P protocols, which are
unreliable channels, do not support packet resend.

Let us consider a common case where a victim uses a
laptop and Wi-Fi connection for voice chatting. As many
streaming or VoIP services use UDP for a real-time service,
packet loss can occur if Wi-Fi communication channel is
unreliable. Another common case is the use of anonymous
networks such as Torfone [18] where users try to conceal
themselves. As anonymous networks do not have transparent
latency and bandwidth, packet losses could occur when UDP-
based services (or any other service that uses an unreliable
protocol) are used over those networks such as Torfone.

According to the survey conducted in [48], packet loss
rate for common VoIP users is about 2% or less. To deal with
this packet loss problem, empty signals can be estimated by
performing linear interpolation between the remaining ENF
values in a given frequency domain.

With those mitigation previously mentioned, we restore the
ENF signals which are distorted by passing through the audio
channel such as Figure 7. The patterns seems almost similar,
but reconstructed signal from Skype seems have more error
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than that from Torfone. From this figure, we can infer that the
lack of base ENF signal is more critical than the data loss.

Fig. 7. Reconstructed ENF signals passed through the audio channel. (The
figures are best viewed in colors)

C. Location estimating

The next process is to estimate the inter and intra-grid loca-
tions using the ENF signals processed through the techniques
described above.

1) Inter-grid estimation: Inter-grid estimation is about dis-
covering which power grid collected ENF signals come from.
Our assumption for Inter-grid estimation is that oscillation
patterns of ENF signals might be similar to each other if two
different ENF signals are collected from the same grid.

To localize ENF signals on multiple grids through classifi-
cation, we applied the Distance Weighted k-Nearest Neighbor
(DW k-NN) algorithm. After labeling the collected set of
anchor nodes with location information, we determine the k-
nearest neighbours with inversely proportioned weights. Since
we are using k-nearest neighbours, other nodes will have an
weight of 0. The expected labels can be denoted as follows:
argmax(Σ(wi/Σwi × f(xi))), where f(xi) is the label of
node i, wi = d−2

i is the assigned weight of node i, and di is
the euclidean distance of signals between a classifying point
and node i. Here, k is selected based on the number of ENF
signals collected to be used as anchor nodes.

However, a distance weighted algorithm can be used to deal
with the bias of sampling numbers of each grid. For instance,
let assume that there are Eastern and Western power grid, and
that the signal from target victim actually captured from the
East. If there are not enough number of samples from the East,
common k-NN algorithm might infer the location to the West
even the Euclidean distances between a victim and the West
anchor nodes are close. Therefore, we can resolve this problem
by assigning the weights to 0 when the distances are too far.

2) Intra-grid estimation: Intra-grid estimation localizes
points of the ENF signal captured inside a power grid. Intra-
grid estimation is straightforward as every single cell of the
ENF map has already been interpolated (see Section IV-A).

To estimate an internal location from a given power grid,
we calculate the Euclidean distance between a time-series
sequence of interpolated signals in a single grid and the
victim’s ENF signal. Comparing to the method that uses
correlation coefficient [17], [23], Euclidean distance method
is a more intuitive way of measuring the similarity of given
signals, and takes much less computational time. However, this
approach is still useful since it can visibly show an inferred
location (see Figure 8). The color map represents the distances

Fig. 8. Euclidean distance between target ENF sequence and interpolated
sequences in the Eastern power grid of the United States. Red dot indicates
where the signal actually collected. Red area means it is far from target signal
and yellow area means it is close. The ENF presence decision boundaries
divide total area equally with number of n.

between interpolated ENF sequences and the victim’s extracted
ENF signal sequences. With the similarity measure, the red
area of the color map denotes that the interpolated sequences
are far away from the extracted sequence, and the yellow area
means they are close and it is highly likely for the signal to
be extracted from there.

To evaluate the accuracy of the location inference attack,
the target region was divided into n parts of equal area where
n is the number of ENF signal samples. The term “decision
boundary” is used to separate and distinguish each area. The
attack accuracy is defined as the ratio between the number
of correctly guessed (inferred) areas and the total number of
areas.

For example, in Figure 8, the red point indicates the
location where an ENF signal was captured. If we select the
ENF presence boundary by choosing the first out of n highest
boundary probabilities, resulting prediction could be wrong; if
we set the boundary by choosing the second highest boundary
probability, resulting prediction is more likely to be right. Since
the degree of precision depends on n, we will discuss how n
is chosen in Section V.

As the range of the decision boundary increases, the attack
accuracy also increases. To set the right number of n, we
determine the region decision boundaries by the number of
anchor nodes in this paper so n is the number of anchor nodes
in the same grid.
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Since the electrical network characteristics and structures
are not identical for all grids around the world, the propagation
and convergence speeds could be different. Further, location
estimation in intra-grid can be performed with many approxi-
mation techniques, losing high volumes of integral informa-
tion. Despite those concerns, the effectiveness of intra-grid
estimation has already been demonstrated with experimental
results [17], [32], [23], [24], [25].

D. LISTEN attack optimization

Additionally, we developed more advanced signal process-
ing methods for the LISTEN attack in order to extract more
accurate ENF signals.

First signal processing technique is to check whether the
scraped audio streams contain ENF signals of interest. It
is evident that only some audio streams or files contain
ENF signals in a known frequency domain. If any sound is
not recorded through an AC microphone, we cannot capture
ENF signals from it. Therefore, we need to check whether a
collected audio file or stream includes ENF signals, and delete
the file if it does not contain ENF signals.

There are two ways of getting rid of unreliable data.
The first approach is to compare the ENF signals from the
victim to all other reference signals from anchor nodes and
check whether it is abnormally fluctuating. This is based on
the assumption that ENF signals in an identical power grid
will have minimal variations. This is effective since it uses
the reliability of other signals. The other way to remove
the unreliable data is to use self standard deviation. Without
comparing against any other extracted signal, we can use
the fact that a clean ENF signal has a standard deviation of
±0.03Hz [10]. By filtering the ENF signals which have value
higher than 0.03, we can have moderate quality of ENF signals.

After checking the existence of the ENF signals, we reduce
noise and enhance the desired signals by using multi-tone
harmonics analysis and QIFFT to improve the quality of ENF
signals.

Finally, we need an additional step to build stable and
longer ENF signals with signal alignments. Beyond the noise
reduction, it is also important to obtain longer ENF signals
since they can provide more accurate and stable analysis [7],
[22], [31], [55], [17], [21]. However, most ENF signals directly
obtained from multimedia data are too short to use because it
is very difficult to directly extract a long ENF signal from a
multimedia service. For instance, if the broadcaster of Ustream
service offers content for a sufficiently long time, we can
download and analyze the appropriate multimedia data for the
ENF signal; however, if not, then we either cannot obtain the
full signal or can obtain only incomplete signals. Therefore,
to build stable and longer ENF signals, a signal alignment
technique is introduced to align the multiple ENF signals
from different multimedia broadcasts. After we collect many
multimedia data streams in adjacent places and subsequent
times with an overlap of the time range, we can construct
a semi-complete ENF signal. To align the multiple partial
ENF signals, the well-known normalized cross correlation
(NCC) metrics is used since it provides the similarity of the
overlapping signals.

V. EVALUATION

This section presents the LISTEN attack performance eval-
uation results. We calculated the accuracy of inter- and intra-
grid estimation using three different audio communication
environments. In order to conduct this experiment, we first
collected the audio stream from the online stream services.
Then, we distorted the audio streams by passing them through
a virtualized audio channel to mimic real-world communi-
cation. Therefore, experiments are categorized based on the
following three conditions in the audio channel that were used
to distort the stream data:

1) Raw audio streams (no distortion): This experiment
uses raw audio streams directly obtained from online
multimedia. That is, the communication channel is
perfectly reliable so there is no error and distortion
in the audio channel;

2) Skype+VPN: This experiment uses audio streams
that are distorted with Skype over a virtual private
network (VPN). In this case, the stream data can
be affected from unwanted influences such as packet
loss, signal removal by filters, and time delay.

3) Torfone: A VoIP application is used over a Tor
network. Since Torfone uses its proprietary codec for
real time communication, audio streams can often be
distorted. Stream data can be affected from unwanted
factors such as signal removal by filters and jitter
from time delay.

We describe those experimental setups in Section V-A,
and show inter-grid estimation performance and intra-grid
estimation performance in Sections V-C and V-D, respectively.

A. Experiment setups

1) PC and software specifications: We used two PCs each
equipped with Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz,
64GB RAM, and Ubuntu 16.04.1 LTS (64-bit) operating
system. We used Python as the programming language, and
a Linux module called “ffmpeg” for scraping and decimating
video and audio data from streaming services. MATLAB was
used for data analyses.

2) Dataset used in virtualized audio channels: Virtualized
audio channels were used for the three experiments to mimic
real-world communications that contain noise. To construct vir-
tualized audio channels, we crawled and scraped audio stream-
ing data directly from online streaming services accessible
through the Internet. Those online streaming services are listed
in Table I. We collected a total of 99 audio stream data from
Earthcam, Explore and Skyline because their audio stream data
contain the exact latitude and longitude information. To stably
store and efficiently process the collected stream data, we
decimated an hour-long wav extension file to 1, 000Hz sound
source streams, taking up about 10MB of disk space.

3) Skype+VPN and Torfone: To measure the effectiveness
of the LISTEN attack performed on noisy audio channels, we
considered two examples that use unreliable audio channels:
Skype+VPN and Torfone. Environmental conditions for the
two channels are shown in Table II.

Skype, which is one of the most widely used VoIP services,
uses peer-to-peer protocols to establish an Internet telephony
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Fig. 9. To emulate VoIP client A (Caller) from a remote host, we first obtained the audio data from streaming servers and inputted the audio file directly to
VoIP software. To exclude unintended effects from physical devices, all the microphone and speaker operations were processed with virtualization technique.
By splitting the experiment into two parts - gathering audio files and actually running VoIP S/W, we can increase the re-producibility without losing details.

TABLE I. ENVIRONMENTAL FACTORS OF VIDEO STREAMING
SERVICES. WE USED AUDIO STREAMS FROM EARTHCAM, SKYLINE AND
EXPLORE WHICH OFFER LOCATION INFORMATION. THEY EMBED ENF

SIGNALS WITH HIGH PRESENCE RATES.

ENF the number
Service Categories presence rate(%) of samples

Earthcam [12] landscape 85.29 36
Skyline [49] landscape 95.16 39
Explore [15] nature 70.59 24

TABLE II. ENVIRONMENTAL CONDITION OF SKYPE AND TORFONE.
SKYPE’S SILK CODEC WORKS AS A HIGH-PASS FILTER WHOSE CUT-OFF

FREQUENCY IS 70HZ. TORFONE SUPPORTS VARIOUS VOICE CODECS
INCLUDING COMMONLY USED GSM.

Application delay(ms) codec packet loss(%)
Skype+VPN ∼400 SILK 1.23
Torfone ∼2000 GSM 5

network. Due to this peer-to-peer characteristic, Skype auto-
matically (by default) reveals the participants’ IP addresses to
each other. For that reason, people who prefer using Skype
anonymously often use location-concealing methods like VPN
or Tor. However, since VPN or Tor usually slows down the
connection speed, using VoIP over VPN would increase time
delay as well. This experiment was designed to test whether
ENF signals can be extracted and restored when there are both
frequency filter being applied and some time delay.

The other channel we selected is Torfone. Torfone is a VoIP
application that uses onion domains 2 as IDs, and connects
users through Tor networks. Due to the privacy-preserving
characteristics of Tor, Torfone provides stronger anonymity
than a typical VPN service but could lose more packets in UDP
connections (which most VoIP applications use). Unlike Skype,
Torfone offers several voice codec options for users. Torfone
supports ADPCM, GSM, Codec2, and other common voice
codecs. Among those options, we chose GSM for experiment
after considering the popularity of the candidate codecs.

4) Virtualized audio channels to emulate VoIP client A
(Caller) from a remote host: To run experiments reliably, all
conditions except the channels that transfer data need to be
kept consistent. However, running various channels at the same
time would cause unintentional side effects such as increasing

2Onion domain is the domain for onion network [19], which enables
anonymous communication. This is also called The Onion Rounting (TOR)
network.

packet loss or time delay. In addition, it is difficult to run
the experiments again for verification purposes. In such an
experimental setup, it would be impossible to regenerate the
exact same outside sound again, and there would be a risk of
encountering white noises while mimicking the environmental
conditions. Hence, this kind of experimental setup seems
impractical due to this intractability of reproducing the exact
same audio sounds in Skype+VPN and Torfone.

To overcome this problem, we used an audio virtualization
technique, which redirects sounds (from audio files) to a
microphone of a computer. Considering that microphones and
speakers work in a similar way, it is possible to redirect
an output of a speaker (sound information) to an input of
a microphone. Then the microphone would obtain the same
sound input data as it would receive the speaker output without
any sound loss and white noise. Thus, the caller would perform
two subsequent steps. First he or she would receive audio files
from multimedia streaming servers, and redirect those files to
a VoIP software. Hence, the actual, final experiment design is
as shown in Figure 9.

This final experimental setup is more effective and efficient
than simply putting a speaker next to a microphone, and
physically replaying audio files. In such a setup, there are
two key risks: (1) we cannot guarantee that sounds from a
speaker are be fully transferred to a microphone without data
loss, (2) noise interference would be inevitable. However, with
our audio virtualized environment, there is no risk of noises
being added nor risk of losing original information since it
inherently prevents physical environments to interfere after
recording is done. As shown in Figure 9, by simple replaying
audio files from the voice sending server, we could easily
change the channel conditions without altering the sounds
being transferred. All our experiments were conducted using
the same condition except the VoIP channel.

B. Existence of ENF signals in audio streams

Given the experimental setups described above, we first
checked the existence of ENF signals in online streaming
data – even though streaming data for VoIP applications
is transmitted over noisy audio channels (Skype on VPN,
and Torfone on Tor network). This section presents Skype
communication results and Torfone results.
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(a) Raw audio streams (no distortion) (b) Skype+VPN (c) Torfone

Fig. 10. FFT results and spectrograms of the captured audio streaming data. The upper figures plot FFT results of the raw audio streams (a), Skype (b), and
Torfone (c), respectively; the lower figures are their spectrograms. The base ENF signal at the fundamental frequency is not observed (green region) but the
harmonics are still visible after passing Skype’s (b) audio channel (purple region). Harmonics and base ENF signal are also visible in FFT results of Torfone
(c).

People can typically hear 20Hz to 20, 000Hz but this does
not mean that every frequency in this range constitutes a human
voice. Since there are certain frequency regions that mainly
constitute daily-life sounds including human voice, many VoIP
software apply special filters in sound data to provide better
call quality. Through this experimental step, we wanted to find
out if ENF signals can be extracted and restored after voice
passes a VoIP filter.

To visualize the effect of the filter in the audio channel,
Figure 10 plots 1D spectrum in the top sub-figures, and 2D
spectrograms in the bottom sub-figures. Left, center, and right
sub-figures represent (1) raw audio streams (no distortion),
(2) Skype+VPN, and (3) Torfone respectively. There are two
types of transparently coloured regions. Green regions are
located at the base frequency rage and purple region are located
at the multiple harmonic frequencies respectively. The bottom
sub-figures shows how the packets are lost during transmission.
In the 2D spectrogram, the x-axis represents the temporal index
and the y-axis is its corresponding frequencies.

As can be seen in Figure 10-(b), ENF signals with Skype
are particularly filtered ∼ 70Hz frequency region. Since Skype
filters out frequency areas lower than 70Hz, base frequency of
ENF at 60Hz region are removed and suppressed. That is,
LISTEN attack cannot be successful because of the absence
of ENF signals at the base frequency. However, we can
construct ENF signals by combining and extracting harmonics.
Figure 10-(b) demonstrates that signal at the base frequency
has been filtered while it passes through the audio channel of
Skype but there are still the peak points in purple region, which
are the rest of the harmonic signals and they are preserved by

passing through above the cut-off frequency. This can be also
shown in Figure 10-(e).

Meanwhile, in the case of Torfone, we can see that base
ENF signal also remained around 60Hz as shown in Figure 10-
(c). Furthermore, we can observe that packet loss exists in
case of Torfone such as shown in Figure 10-(f). Since Torfone
uses Tor-network for voice chatting, the frequency bandwidth
of communication channel cannot digest the bandwidth of
audio channel. Therefore, even though Tor-network uses TCP
network, Torfone over Tor network frequently drops the lately
arrived packets by force in order to provide real-time commu-
nication through its own codec.

C. Inter-grid estimation

Inter-grid estimation is basically classification problem.
Given know sample data set with annotated region IDs, we
infer the power grid ID of a new sample of interest. For this
experiment, we extracted 99 audio streams from the world
at the same time, but we removed 31 audio streams which
do not have ENF signals. Thus, in our experiments, 68 audio
streams are finally obtained and used since they have ENF
signals. These streams were located in 7 power grids, which
are Eastern and Western Interconnection of the United States,
Central and Northern Power grid of Europe, Brazil, Peru and
Cuba. Leave-one-out cross-validation is used to evaluate the
inter-grid estimation. We partition the data into a training
dataset with 67 streams and a testing dataset with 1 stream.
We repeatedly run 68 different runs to obtain sound statistics.
With this cross-validation, we measured the accuracy of the
classification with varying the length of segment as shown in
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Fig. 11. Accuracy vs Segment length (min) for inter-grid estimation with
40-minutes segment length.

Figure 11. Figure 11 shows that the accuracy of the experiment
has the most highest value at 90.77% when the segment length
is 40 minutes. As the length of the victim’s segment increases
from 10 minutes to 40 minutes, the accuracy rates of the inter-
grid estimation hardly raise. This is because one of the key
features for classifying power grids is the expectation value of
ENF signals [25]. Although more information can be included
as the segment length increases, the variation of the mean value
is not evident for few minutes that we can classify the power
grid with small size of ENF sequence.

In addition, as we mentioned in the previous section,
Torfone has harsher environment than Skype over VPN so
delay is longer and data loss rate is bigger. However, we
find that the performance on using Skype over VPN is worse
than one on using Torfone. This result indicates us that the
more critical factor for constructing ENF signal against audio
channels is the fact that fundamental (1st) ENF signal is filtered
by high pass filter in audio codec of Skype [50].

D. Intra-grid estimation

Intra-grid evaluation was conducted based on 40-minute
sound sources located in the eastern power grid of the United
States among the audio streaming data collected from all
over the world. 16 audio streams located in the eastern US
power grid was collected from online multimedia services: 6
from Explorer, 9 from Skyline, and 1 from Earthcam. In this
experiment, they are used to construct a reference ENF map
so we name them anchor dataset. Given this reference map,
we can infer the location of a new audio streaming data of our
interest. Therefore, we extracted target source through Skype
and Torfone.

For the evaluation, we set n as the number of anchor nodes
in order to reflect the fact that more accurate location informa-
tion can be estimated as the number of anchor nodes increases.
Based on this, we obtained that accuracy is approximately 80
percent when the decision boundary is bigger than 3 as shown
in Figure 12. The accuracy almost does not increases for three
subjects when the index of decision boundary is after 4 until
16. Thus, we optimally take the presence decision boundary

to 4. As we mentioned earlier, we also defined the presence
of the decision boundary by the number of n in Figure 8.

We can also obtain accuracy with absolute measure of
distance or area. In the case of Eastern power grid of the
United States, the approximate total area of Eastern power grid
is about 341, 754miles2. Considering our relative accuracy is
76% for 3 out of 17 decision boundary, the area of estimated
location is V = 60, 309miles2. Since the area of a circle is
calculated by V = π R2, we can calculate the approximate
distance from the actual hidden location and the center of the
estimated area by R ≈ 138.55mile.

We evaluated the accuracy conducted with the varying
length of segments. The accuracy rate decreases as the segment
length become shorter which is shown in Table III. Still, with
the length of 5 minutes of ENF signals, we have the accuracy
of 76% in our proposed attack. Furthermore, we can see that
the signals passed through Skype is reconstructed better than
the signal passed through Torfone. It means the effect by lack
of base ENF signal is more critical to attacker than that by
packet loss and delay.

Fig. 12. Accuracy vs Decision Boundary for intra-grid estimation with 40-
minutes segment length.

TABLE III. ACCURACY VS SEGMENT LENGTH (MIN) FOR INTRA-GRID
ESTIMATION.

Segment Accuracy (%)
length (min) Raw data Torfone Skype + VPN

5 76.4 76.4 70.5
10 76.4 76.4 70.5
15 76.4 76.4 70.5
20 70.5 76.4 70.5
25 76.4 76.4 76.4
30 76.4 76.4 76.4
35 82.3 82.3 82.3
40 82.3 82.3 82.3

VI. DISCUSSION

This section discusses defense mechanisms to mitigate the
proposed LISTEN attack, and the attack’s inherent limitations.

A. Mitigation techniques

We suggest three potential mitigation techniques to pro-
tect users of online multimedia streaming services and VoIP
applications from the proposed (or similar) attacks.
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1) Avoiding AC microphones: As mentioned in Section III,
the LISTEN attack works on users who are using input devices
that capture ENF signals. In particular, the the raw audio
stream data being transmitted need to be produced through an
AC microphone. Therefore, to preserve privacy, use of other
types of microphones (e.g., a DC-powered microphone) can
be recommended to reduce the risk of being exposed to ENF-
based side-channel attacks.

2) Insertion of fake signals: In order to downgrade the
performance of the LISTEN attack, one could add noise to
target raw audio stream data. Noisy 50 or 60Hz signals can be
inserted before transmitting stream data to attacker’s device
or uploading a recorded stream file to a streaming server.
Added noise will make it more difficult to extract original ENF
signals. This countermeasure needs to be designed carefully
though as insertion of pure random noise might not be effective
– pure random signals can be easily removed through a noise
cancellation filter such as a median filter.

A more ideal way of generating noise signals is to ran-
domly choose fake signals from a collected set of real-world
ENF signals. Such fake signals will be much harder to identify
and filter.

3) Removal of ENF signal patterns: Another possible
approach is to remove ENF signals from the raw audio
stream data. Chuang et al. [8] presented several signal pro-
cessing techniques to remove and modify ENF signals while
guaranteeing high quality streaming of raw audio data. For
example, we can use the band-stop filter to remove only ENF
signals at the specific range of frequency band since the band-
stop filter passes most frequencies of audio data unaltered
but removes restricted small frequency region. The band-stop
filtering techniques have been studied comprehensively in the
field of signal processing [40].

B. LISTEN attack limitations

Although the LISTEN attack can be effectively used to
identify recording places of content creators or physical loca-
tion of VoIP users, the attack provides coarse-grained location
information within a given a power grid (see Section V-C).
This degree of inferred detail might not be sufficient for ap-
plications that require more fine-grained location information.
Also, the performance of the LISTEN attack could be degraded
depending upon the segment length of given raw audio stream
data.

As mentioned in Section III, the LISTEN attack requires
the raw audio stream data to be produced by a device that is
capable of capturing ENF signals; e.g., AC microphones.

C. Effectiveness of ENF map with a small number of ENF
samples

Although our ENF map is validated by estimating cross-
correlation between interpolated ENF signals and underlying
ground-truth ENF signals (as shown in section IV), the ENF
map can become unstable when a small number of ENF
samples are only used for constructing the map. In such
environments, location cannot be accurately pinpointed. It is
obvious that a more accurate map can be constructed and
location can be identified with a higher accuracy as ENF

sample size increases. That is, the attack (inferred area) ac-
curacy would improve with the increase in collected dataset
size. A possible way to increase the number of ENF samples
is to combine the ENF samples collected from multimedia
streaming services with physical ENF signals collected from
GridEye/FNET system [22].

VII. RELATED WORK

Inferring user location with side-channel channel attacks is
one of the hottest issues in the field of information security.
The primary goal of our attack is to reveal the location of
streamers and voice chatters with using ENF signals from their
recorded sound. Many location estimation techniques using
ENF signals are actively researched in recent years. First,
we discuss about recent researches which have a different
approach for side-channel attack. Then, we discuss about
research of which target system is similar with ours, such as
VoIP services (e.g., Skype). Finally, we discuss about recent
works, that identifies location with ENF has been historically
improved.

A. Inferring user location

In Narain et al [37], in mobile phone, they address the
approach which can infer the location and route of moving
target with only gyroscope, accelerometer, and magnetometer
information. They apply this information to already collected
road information with their algorithm. In Android mobile
phone, the permission should be approved by mobile phone
user to install the application. While the GPS sensor permis-
sion is in critical level, other sensors which we previously
mentioned does not need any additional permission. Compared
to our research, there are no applications that collect the infor-
mation from these many sensors among the commonly used
applications, that additional installations are needed because
they are not provided by the server even if they are collected
from common application. Similarly, in Michalevsky [36],
they use only power consumption for inferring location, even it
is not considered as critical as sensor’s information from [37].
The fundamental idea of this study is that power consumption
depends on the location of the mobile device. They also
gathered routes and power consumption information on road
and applied those data to machine learning algorithm. Both
studies were conducted on mobile device which is moving
along the road, while our general attack target is motionless
indoors.

B. Revealing anonymity in VoIP

In this section, we summarize other researches about track-
ing users’ location through VoIP services and compare them
with our results.

There are recent researches trying to extract useful infor-
mation from audio data. By Wright et al [53], most VoIP
services use variable bitrates(VBR) audio codecs for encoding.
In VBR codecs, vowels and consonants are usually encoded
in packets of different lengths. Using this information, Wright
et al. proposed way to find out which phrases were spoken
from VoIP packet sizes. Using this result, Coskun and Memon
proposed robust hashing scheme for VoIP packet to track VoIP
calls. [11] They suggest hashing scheme which is able to

12



pair original packet streams to distorted streams after delay,
jitter, and packet drops. However, though its robustness can
be applied in impairments-existent conditions, there are some
limitations to apply their scheme to actually tacking VoIP
callers. Since it is only able to check whether two packet
streams store the same(or similar) data, it is needed to monitor
all packets to identify pairs among all possible nodes and this
complexity isn’t reduced if we could control one endpoint.

C. Location estimation with ENF signals

In this section, we introduce the recent researches for
estimating the geo-spatial location with ENF signals from
recorded audio for inter-grid and intra-grid.

To classify the ENF signals for inter-grid, some of the
researches adopt machine learning algorithms, and some use
correlation coefficient. One of good example for using machine
learning algorithm is the research by Hajj et al [25]. They use
statistical characteristics of ENF signals and auto-regressive
model parameters for features, and apply those parameters to
soft vector machine (SVM) classifier. In other ways, estimation
can be performed with simply calculating the correlation coef-
ficient value between sampled signals and target signals [23].

By the way, recent intra-grid location estimation researches
used approximation techniques as we mentioned earlier. Those
researches make their assumption and prove them with ex-
perimental results. One of the good techniques for intra-
grid location identification is well introduced in research by
Garg et al [17]. The basic idea of this work is that the
correlation coefficient between two ENF signals might roughly
inversely proportional to the distance between the points which
those ENF signals come from. The first approach of them
is to evaluate the distance of estimating point which is on
a straight line. They calculate the distance with about 90% of
accuracy and prove their assumption. Next is to localization
with Half-plane intersection methods. Assume that two points
are anchor nodes and we have to estimate the location of
target ENF signals. With the principle of correlation coefficient
and distance, we can briefly say that which node has higher
correlation, which means it is nearer than other anchor nodes.
By using those speculate, we can determine where the ENF
signals has been captured between one of the planes, that
divided by perpendicular bisector of two anchor nodes. They
also evaluate their performance with variation boundary of
parameters, which is correlation coefficient, while we use it
for area.

VIII. CONCLUSION

Unlike existing location inference techniques [36], [37],
[52] that require installation of a malicious application on a
victim’s device and an expensive ENF receiver, the proposed
LISTEN attack can be performed with access to just the target
video or audio file.

To demonstrate the effectiveness of the LISTEN attack, we
experimented with the multimedia data collected from three
online streaming services, Earthcam, Skyline, and Explore,
as well as two VoIP applications, Skype, and Torfone. Our
results show that the LISTEN attack can be highly effective
in inferring the physical location of which a video or audio
file was recorded. We achieved an accuracy of 76% which is

a reasonable level when the multimedia source was 5 minutes
or longer.

Our results, however, need to be generalized with caution
since the current ENF map only covers the Eastern power grid
of the United States. As part of future work, we plan to expand
the map to cover more locations, and evaluate the attack based
on samples collected from areas uncovered in this paper.

Our LISTEN attack is currently limited to the multimedia
files recorded with mains-powered microphones. For general-
ization, we also plan to design ENF signals-based attacks for
environments where mains-powered microphones are not used.

Although we positioned the findings as a way to perform
an inference attack, our techniques could also be used to
identify locations of criminals such as kidnappers, terrorists,
or phishers who use multimedia to threaten and abuse people.
Another future work is to extend our findings to develop such
countermeasure technologies.
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