
Towards Scalable Cluster Auditing through
Grammatical Inference over Provenance Graphs

Abstract—Investigating the nature of system intrusions in
large distributed systems remains a notoriously difficult challenge.
While monitoring tools (e.g., Firewalls, IDS) provide preliminary
alerts through easy-to-use administrative interfaces, attack recon-
struction still requires that administrators sift through gigabytes
of system audit logs stored locally on hundreds of machines.
At present, two fundamental obstacles prevent synergy between
system-layer auditing and modern cluster monitoring tools: 1)
the sheer volume of audit data generated in a data center is
prohibitively costly to transmit to a central node, and 2) system-
layer auditing poses a “needle-in-a-haystack” problem, such that
hundreds of employee hours may be required to diagnose a single
intrusion.

This paper presents Winnower, a scalable system for audit-
based cluster monitoring that addresses these challenges. Our
key insight is that, for tasks that are replicated across nodes in
a distributed application, a model can be defined over audit logs
to succinctly summarize the behavior of many nodes, thus elimi-
nating the need to transmit redundant audit records to a central
monitoring node. Specifically, Winnower parses audit records into
provenance graphs that describe the actions of individual nodes,
then performs grammatical inference over individual graphs
using a novel adaptation of Deterministic Finite Automata (DFA)
Learning to produce a behavioral model of many nodes at once.
This provenance model can be efficiently transmitted to a central
node and used to identify anomalous events in the cluster. We
have implement Winnower for Docker Swarm container clusters,
and evaluate our system against real-world applications and
attacks. We show that Winnower dramatically reduces storage
and network overhead associated with aggregating system audit
logs, by as much as 98%, without sacrificing the important
information needed for attack investigation. Winnower thus
represents a significant step forward for security monitoring in
distributed systems.

I. INTRODUCTION

When investigating system intrusions, auditing large com-
pute clusters remains a costly and error-prone process. Security
monitoring tools such as firewalls and antivirus provide an
efficient preliminary alert system for administrators, quickly
notifying them if suspicious activity such as a malware
signature or a blacklisted IP are spotted somewhere in the
cluster. However, determining the veracity and context of these
compromise indicators still ultimately requires the inspection
of system-layer audit logs. Unfortunately, auditing systems

are not scaling to meet the needs of modern computing
paradigms. System logs generate gigabytes of information per
node per day, making it impractical to proactively store and
process these records centrally. Moreover, the volume of audit
information transforms attack reconstruction into a “needle-
in-a-haystack” problem. In Advanced Persistent Threat (APT)
scenarios, this reality delays incident response for months [49]
as security teams spend hundreds to thousands of employee
hours stitching together log records from dozens of machines.

The audit problem is only further exacerbated by the grow-
ing popularity of container-based virtualization, which has en-
abled rapid deployment and extreme scalability in datacenters
and other multi-tenant environments [22]. Containers represent
the realization of the microservice architecture principle [60], a
popular pattern that encourages applications to run as discrete,
loosely-coupled, and replicated services to provide scalability
and fault-tolerance. However, the rapid adoption of containers
has outpaced system administrators’ ability to apply control
and governance to their production environments. Container
marketplaces such as Docker Store [4] now host over 0.5
million containers and boast over 8 billion downloads [1];
while these services simplify the sharing of applications, they
also create a new ecosystem in which poorly maintained
or malicious code is permitted to spread. These containers
have no security guarantees and can contain vulnerabilities
that could be used as attack vectors [66], [64]. Recently,
Red Hat surveyed enterprises to figure out technical factors
which prevent the use of containers in production and 75% of
enterprises claimed security to be a major concern [10].

Data provenance, metadata that describes the lineage of
data transformed by a system, is a promising new approach
to system auditing. In the context of operating systems,
provenance-based techniques parse kernel-layer audit records
into a causal graph that describes the history of system
execution [20], [54], [59], [51], [37], [62]. The applications for
data provenance are numerous, ranging from database manage-
ment [30], [35], [45], networks diagnosis and debugging [73],
[19], [26], [27], [69], and forensic reconstruction of a chain
of events after an attack [47], [19], [73]. Unfortunately, even
state-of-the-art provenance-based techniques are not presently
applicable to the cluster auditing problem as they lack scalabil-
ity and do not solve the “needle-in-a-haystack” problem. While
work on reducing provenance storage overhead exists [54],
[52], [70], [25]; these systems still lack scalability required
for auditing large clusters.

In this paper we present Winnower, a system that leverages
provenance graphs as the basis for online modeling the behav-
ior of applications that have been replicated across different
nodes in a cluster. Winnower provides a storage- and network-
efficient means of transmitting audit data to a central node
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for cluster-wide monitoring. The output of Winnower is a
provenance model that concisely describes the behavior of
hundreds of nodes, and can be used by system administrators
to identify abnormal behaviors in the cluster. Our key insight
is that, because cluster applications are replicated in accor-
dance with microserivce architecture principle, the provenance
graphs of these instances are operationally equivalent (i.e.,
highly redundant) except in the presence of anomalous activity.
Thus, recognition and removal of equivalent activity from
provenance graphs will simultaneously solve both challenges
associated with cluster auditing.

At the core of Winnower is a novel adaptation of graph
grammar techniques. Inspired by formal grammars for string
languages, graph grammars provide rule-based mechanisms for
generating, manipulating and analyzing graphs [72], [44]. We
demonstrate how graph grammar models can be learned over
system-level provenance graphs through use of Deterministic
Finite Automata (DFA) learning, a restrictive class of graph
grammars which encodes the causality in generated models.
These models can be used to determine whether new audit
events are already described by the model, or whether the
model needs to be incrementally updated. This approach made
possible a series of graph abstraction techniques that enable
DFA learning to generalize over the provenance of multiple
nodes despite the presence of instance-specific information
such as hostnames and process IDs. Combining these two
features, Winnower can transmit and store causal information
to the central monitoring node in a cost-effective manner and
generate concise provenance graphs without sacrificing the
information needed to identify attacks.

This paper makes the following contributions:

– To motivate our use of the container ecosystem as an
exemplar, we conduct an analysis of Docker Store that
uncovers high severity vulnerabilities, justifying the need
for auditing tools (§II);

– We design a novel adaptation of graph grammars that
demonstrates their applicability for system auditing. While
to the best of our knowledge this is the first use of
grammatical inference over data provenance, we foresee
additional security applications in the areas of information
flow monitoring and control (§III);

– We present the Winnower, a proof-of-concept implemen-
tation that enables cluster auditing for Docker Swarm,
Docker’s cluster management tool (§IV). Winnower aug-
ments the Linux Audit System (auditd) to make it
container-aware, providing a means for fine-grained prove-
nance of container-based applications. In evaluation, we
demonstrate that Winnower reduces the overheads of clus-
ter auditing by as much as 98% (§V).

– To determine the efficacy of Winnower for cluster au-
diting, we undertake an expansive series of case studies.
Across five real-world attack scenarios, we demonstrate
that Winnower dramatically simplifies attack reconstruction
as compared to traditional methods based on auditd (§VI).

II. BACKGROUND & MOTIVATION

A. Docker Ecosystem

Docker is the most widely used container-based technol-
ogy [1] which allows users to create self-contained applications

with all dependencies built-in the form of images. Docker Store
is an online registry that allows Docker users to share appli-
cation container images online. Docker images are built on
top of other images; for example, we can create LAMP stack
image by selecting an Ubuntu distribution as a base image,
then add Apache, MySQL, and PHP images. Currently, Docker
Store contains two types of public image sharing repositories:
official repositories that contain curated application containers
verified by the vendors and community repositories that contain
application containers from the public. At the time of this study
there are 140 official containers on Docker Store.
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Fig. 1: Docker Swarm Architecture.

In this work, we used Docker Swarm which is the native
Docker cluster management tool for resource allocation and
dynamic scheduling of containers. However, our system is
extensible to other cluster management tools (see §VIII). The
basic architecture of Docker Swarm cluster is shown in the
Figure 1. Docker Swarm manager is a frontend for users to
control containers in the cluster while actual container executes
on Docker Swarm nodes (Workers). Docker Swarm users can
specify replicated factor when launching containers. Repli-
cation is useful to provide isolation, horizontal auto-scaling,
load-balancing and fault-tolerance to services. For example,
the following command will deploy 12 Nginx containers in
Docker Swarm cluster.

docker service create --name nginx --replicas 12 nginx
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Fig. 2: Docker Store Security Analysis Results.

Security Analysis of Docker Store. To demonstrate the
potential security risks in the container ecosystem, we down-
loaded 140 official images and top 500 community images
from Docker Store. Then, using Anchore’s cve-scan tool [7]
we statically analyzed the operating system packages built-
in or downloaded by these Docker images. cve-scan catego-
rizes the vulnerabilities present in container images using the
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Common Vulnerability Scoring System V3 (CVSS)1 provided
by CVE database, which specifies four severity levels for
vulnerabilities: Low, Medium, High, and Critical. As shown
in Figure 2a and 2b, cve-scan uncovers thousands of CVE’s
in both official and community images.2 Moreover, we found
that over 70% of official images have at least one High severity
vulnerability (Figure 2b). These results indicate that security
threats abound in the container ecosystem, underscoring the
importance of developing runtime auditing solutions to con-
tainer clusters.

B. Motivating Attack Scenario

To characterize the limitations of existing cluster auditing
systems, we now consider a concrete scenario in which audit
records can be used to diagnose an attack – an online file
storage webservice which allows users to upload and download
files using FTP. The webservice consists of a cluster with
one master node and 4 worker nodes running 10 ProFTPD-
1.3.3c containers configured with multiple worker daemons
backed with 5 MySQL database containers for authentication.
ProFTPD-1.3.3c version is vulnerable to a remote code ex-
ecution attack.3 We configured the worker nodes to stream
complete descriptions of their activities to the master node
using the Linux audit subsystem (auditd) [5], a widely used
forensic tracking tool for Linux [71]. While the master node
aggregated audit records from the workers’ auditd streams,
we generated a 3 minute workflow of heterogeneous requests
during which an attack was launched on one of the nodes’
container. The attack used the ProFTPD-1.3.3c vulnerability
to obtain bash access and download a backdoor program to
gain persistent access to the container.

The master node’s view of the cluster is shown in Figure 3a,
where the worker nodes’ auditd streams are represented as
provenance directed acyclic graph (DAG) [57] detailing the

1See https://nvd.nist.gov/vuln-metrics/cvss
2cve-scan does not analyze vulnerabilities in package managers such

as NPM, PIP, and Maven. Nor does it detect insecure configuration settings,
making our assessment a conservative lower bound on the severity of Docker
insecurity.

3Available at https://www.exploit-db.com/exploits/15662/

causal relations of the system. The graph has been simplified
for readability; each node’s graph was roughly 2 MB in
size and contained around 2,000 vertices. The subgraph titled
Attack Provenance only appears in Node 1, whereas the
remainder of Node 1’s graph is operationally equivalent to the
activities of the other nodes. Based on this exercise, we observe
fundamental limitations to leveraging system-layer audits in
large clusters:

– Graph Complexity: Ideally, an administrator would have the
tools necessary to quickly pinpoint an attack and identify
the affected resources, but unfortunately the inspection of
system-layer audit logs in a large cluster poses a needle-
in-a-haystack problem. While we drew attention to the
attack subgraph in Figure 3a, in practice this exercise can
be extraordinarily tedious and error-prone [47], [38]. As
demonstrated here, provenance graph visualization can assist
in forensic exploration [23], [56], but such techniques are
designed for a single-host and thus lack the means to filter
the inherent redundancy across nodes.

– Storage Overhead. The amount of audit data generated
on even a single host can be enormous, around 3.18GB/-
day(server) and 1.2GB/day (client), as shown by previous
studies [52], [36], [47]. When considering that such records
may need to be stored in perpetuity for post-facto causal
analysis, it immediately becomes clear that audit logs rep-
resent a storage burden on the order of terabytes. While prior
work has made inroads at reducing storage burden for single
hosts [54], [52], [70], [25], even state-of-the-art systems lack
the scalability required for auditing large clusters.

– Network Overhead. Beyond the cost of local storage, cluster
auditing requires aggregation of system activity to a central
master node. However, it is immediately apparent that a
naı̈ve approach that transmits all system-layer audit records
to a central node would impose unacceptable network cost.
This is especially true in the case of clusters that are already
deluged with internal network traffic [21].

Winnower’s High-level Idea. We observe that applications
replicated on multiple nodes will produce highly homogeneous
audit logs across executions. As applications will be deployed
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Fig. 4: An example graph on the left and graph grammar production
rules on the right which accept that graph. S, T, and V represent
non-terminals while a,b,c, and d are terminals.

with nearly-identical configurations (e.g., filesystems, launch
sequences), we can expect the resultant provenance graphs
to be similar both structurally (i.e., graph connectivity) and
semantically (i.e., graph labels). on a per-application (or, per-
container) basis. Broadly speaking, our goal is to generate
consensus across all nodes to produce a model of application
behavior like the one shown in Figure 3b. In contrast to
3a, redundancy between nodes has been eliminated, and each
activity is shown only once. However, a confidence level marks
the level of consensus that was reached between application
instances (in 3a MySQL has 5 instances). As the attack
occured on a single node, its confidence level is low, and thus
represents anomalous activity that can easily be identified by
the administrator. Thus, the consensus model is both efficient
to transmit and further, retains the necessary information to
identify the attack.

C. Graph Grammars

To facilitate the creation of a cluster-wide provenance
model for worker execution, in this work we present a novel
adaptation of Discrete Finite Automata (DFA) learning tech-
niques [14]. As DFAs are equivalent to regular grammars [32],
this approach is sometimes referred to as graph grammar
learning. There have been different formulations of graph
grammars that broadly refer to classes of standard grammars
applied to graphs. In a standard grammar, a language of strings
defines a set of rules such that a given string is considered a
member of the grammar if it can be constructed from the rules.
It is intuitive to extend the notion of standard grammars from
strings to graphs, such that a graph belongs to a grammar if it
can be constructed from a set of grammatical rules represented
in the form of L := R where L is the pattern subgraph (or left-
hand side) which can be replaced by R subgraph (or right-hand
side). An example of such grammar and a graph that belongs
to it is shown in the Figure 4.

Graph grammar systems support two important operations:
induction and parsing. Induction algorithms provide a way to
learn a new grammar from a set of one or more example
graphs. Parsing is a membership test that verifies whether
an instance graph can be constructed from a given grammar.
Graph grammar learning is not a deterministic process, as
multiple grammars can parse the same instance of the graph.
As a result, we need heuristic techniques to select an accept-
able grammar. While there are strategies for choosing the best
grammar during induction, we make use of the Minimum
Description Length (MDL) heuristic [40], [18]. The MDL
heuristic formalizes the notion that the simplest explanation
of data is the best explanation of data. MDL is defined by the
following equation:

DL(G,S) = DL(S) +DL(G|S) (1)

where G is a input graph, S is a model (grammar) of the input
graph, (G|S) is G compressed with S, and DL() returns the
description length of the input in bits, The MDL heuristic says
the best S minimizes DL(G,S); in other words, the optimal
S minimizes the space required to represent the input graph.

III. SYSTEM DESIGN

A. Threat Model & Assumptions

Our approach is designed with consideration for a data
center running a distributed application that has been replicated
on hundreds or thousands of Worker nodes. Workers may run
as containers, virtual machines, or bare metal hosts; while our
prototype system is implemented for Docker containers (see
§IV), our methodology is agnostic to the workers’ platform.
We require only that each worker is associated with an auditing
mechanism that records the actions of the node. In addition
to worker nodes, the data center features one Monitor node
that is operated by a system administrator. The Monitor will
communicate with worker nodes to obtain audit records of
their activities.

The attack surface that we consider in this work is that of
the worker nodes. An adversary may attempt to gain remote
control of a worker by exploiting a software vulnerability in the
distributed application (see §II-A), or may have used a market
such as Docker Store to distribute a malicious application
that contains a backdoor. Once the attacker gains control of
a worker, they may eavesdrop on legitimate user traffic or to
make use of the worker’s compute resources to perpetrate other
misdeeds. In the case of virtualized workers, the attacker’s goal
may be to break isolation and gain a persistent presence on the
underlying machine.

An important consideration for any auditing system is the
security of the recording mechanism. This is because it is
common practice for system intruders to tamper with audit
logs to cover their tracks. While log integrity is an important
goal, it is orthogonal to the aims of this system. Therefore,
we assume the integrity of the workers’ audit mechanisms.
In the case of kernel-based audit mechanisms (e.g., auditd),
kernel hardening techniques (e.g., enabling SELinux) can be
deployed to increase the complexity of a successful attack.

B. Design Goals

The limitations outlined in §II-B motivate the following
system design goals:

– Generality. Winnower design and techniques should be
independent of underlying platform (e.g. containers, VM
etc) and applications used by the compute clusters.

– Minimal Log Transmission. Winnower should prevent
worker nodes from sending redundant audit records to cen-
tral node i.e. only transmits the minimum amount of infor-
mation required to adequately describe unique or anomalous
events within the cluster.

– Concise Graphs. Winnower generated provenance graphs
on central node should be concise i.e. capturing aggregated
cluster-wide activities with any anomalous behaviour visible
in graphs.

– Support Cluster Auditing. Winnower should support dis-
tributed querying worker nodes for complete attack tracing
and local policy monitoring in the cluster.
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C. System Overview

Winnower acts as a distributed auditing layer that resides
on top of individual worker nodes’ auditing mechanisms. The
core contributions of Winnower are three functions that enable
efficient aggregation of audit data at a central monitoring node:

1) Provenance Graph Abstraction, in which workers abstract
provenance graphs to remove instance-specific and non-
deterministic information (§III-D).

2) Provenance Graph Induction, in which the worker gener-
ates behavioral models and then Monitor aggregates worker
models into a single unified model and sent them back to
all workers (§III-E).

3) Provenance Model Incremental Updates, in which workers
check to see if newly generated provenance records are
described by the global model. If and only if they are
not already in the model, the workers transmit the model
updates back to the central node (§III-F).

Using aforementioned functions, our aggregation technique
works as follows: First, Winnower uses an application-aware
provenance tracker on each node to find and separate ho-
mogeneous audit logs from replicated applications. In the
attack scenario we discussed in §II-B, Winnower separates
ProFTPD and MySQL logs. Then, to remove instance-specific
information from homogeneous audit logs, Winnower apply
provenance graph abstraction function locally on each worker
node. In the Figure 3a, different IP addresses are present
in socket vertices attached to “ftp listener” process vertex.
However, exact IP address in vertices is not important to
extract behaviour of application and therefore, we can abstract
it before model construction. After that, Winnower apply
provenance graph induction function to remove redundancy
and generate behavioral models. In the Figure 3a, “ftp” process
vertex spawns several “ftp listener” process vertices. As they
represent semantically equivalent behaviour (causal path is
same), we can combine them into single vertex as shown in
the Figure 3b. Finally, Winnower prevents worker nodes from
transmitting redundant audit records using provenance graph
incremental update function and send only the graph grammar
model’s updates to central node.

In addition to these core functions, Winnower provides a
fully-realized distributed provenance tracing framework that
supports forward and backward tracing of system events as
well as policy-based automated system monitoring. We de-
scribe these features in §IV with greater details.

D. Provenance Graph Abstraction

The core function of Winnower is to ingest the provenance
graphs of different worker nodes and output a generic model
that summarizes the activity of those nodes. However, even if
all nodes are clones of the same image, we can expect that a va-
riety of instance-specific fields and descriptors will be present
in each worker’s graph. For example, each web service worker
will receive web requests from different remote hosts, causing
different IP addresses to appear in their provenance graph.
We would also expect instance-specific identities assigned to
each worker such as a host name or dynamically-assigned IP
address. While these details are important when inspecting an
individual node, they not useful to an administrator attempting
to reason about a distributed system in aggregate. In fact,

these instance-specific fields will frustrate any attempts to
build a generic application behaviour model because equivalent
events have been assigned different labels on different nodes.
Therefore, before attempting model generation we must first
abstract away these instance-specific details.

To facilitate this abstraction, we group the different fields
found in provenance vertex labels into one of three classes,
handling each as follows: equivalence classes contain instance-
specific information and are abstracted using summarization
techniques prior to model building; immutable classes will
not contain instance-specific information and therefore are not
changed; finally, removal classes are simply removed from
the vertex label prior to graph comparison. Below, we explain
classification of each field associated with each provenance
principle (i.e., activity, artifact, agent).

Activities. Activity vertices consist of five different labels:
Process Name, PID, Timestamp, Current Directory (CWD),
and Command line Args. Because we expect all workers to
follow the same general workflow, process name, CWD, and
command line arguments are handled as immutable; in other
words, a deviation in either of these fields will be visible in
the final model. PIDs and Timestamps can both be influenced
by non-determinism and vary between executions, and are
therefore removed. In the Figure 5, pid is removed from
Activity vertices after graph abstraction step. For brevity, we
omit description of other environment variables, which can be
handled similarly.

Artifacts. Artifact vertices are further categorized into sub-
types based on data types. We describe our general approach
with consideration for file and socket artifacts below, omitting
other artifacts such as IPC for brevity:

• File Artifacts: File subtype vertex consist three labels: File
Path, Operation (i.e., read/write/create) and Version. The
version field is incremented each time data is written to an
argument, which is highly dependent on dynamic events
such as network activity and is therefore removed. The
operation label is also removed for simplicity, as this infor-
mation is already encoded in the edge labels of the graph.
The most important filed, file path, is handled differently
depending on the class of file: (a) Core-system Files: these
files are common across all workers and therefore do not
need to be abstracted, so we scan the node image to create
the set sysF iles and treat these files as immutable. In the
Figure 5a file path label /usr/lib/libpq.so vertex is not
removed after abstraction. (b) Temporary Files: temporary
files are those files who only interact with a single process
throughout their entire life cycle. As noted in [52], these
files do not have meaning when attack tracing, and can
therefore, be removed. In the Figure 5a, where artifact file
path label /output/file1 attached to “ftp worker” process
vertex is removed after abstraction. (c) Equivalent Files:
all the other files are treated as the equivalence class. For
a given activity, when more than a configurable threshold
(τFile) of equivalent files are present, they collapsed into
one vertex that is labeled as the most specific common file
path across all file paths.
• Socket Artifacts: The socket subtype vertex is described

by an IP Address field. Web services exchange messages
over the network with a wide variety of remote clients. The
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Fig. 5: Applying graph abstraction and graph grammar induction on FTP application provenance graph.

reported IP addresses of the remote clients will lead to many
subgraphs within the provenance graph that all describe the
same workflow. To provide an easy-to-understand generic
model, it is important that the model not grow with the
number of remote connections. Therefore, the IP address
field is treated as an equivalence class. For a given activity,
when more than a configurable threshold (τSock) of remote
connections are present, they collapsed into one vertex that
is labeled as the most specific common subnet across all IP
addresses. An example of this is shown in Figure 5a; the
artifact that was generated by ftp worker represents many
network transmissions in the 192.168.0.0/24 subnet mask.

Agents. Agents are described by a Uid field. Because we
expect all workers to follow the same general workflow, we
treat UIDs as immutable; in other words, the presence of a
new agent on a given node will be visible in the final model.

Graph Abstraction Algorithm. Graph abstraction is trig-
gered by a cluster-wide configurable epoch t, after which each
node performs abstraction locally. In the Figure 6, we outline
the pseudocode for efficient traversal of provenance graph
and apply abstraction on each vertex. Because all activities
are connected to their child activities, traversing the activity
nodes while inspecting their immediate artifact/agent children
is sufficient to perform a complete traversal of the provenance
DAG. In the Figure 6, the functions ABSTRACTACTIVITIES,
ABSTRACTFILES, ABSTRACTSOCKETS, and ABSTRACTA-
GENTS apply the transformations discussed above to the input
DAG.

Discussion. Performing the abstractions discussed above will
invariably lead to a loss of context in the resulting global
model. Eventually, we may need this instance-specific infor-
mation to perform further attack investigation and incident
response. Therefore, an unmodified record of each worker’s
provenance (Dag) is maintained on the local node. An ad-
ditional concern is that our abstraction techniques can lead to
mimicry attacks [67] by launching attack process with the same
name and commandline arguments. However, as we never
remove process vertices during abstraction and further, the
causal path of attack process vertex will be different, mimicry
attacks will always be visible in the final model. Finally, we
note that Section V considers the compression benefits of graph
abstraction in isolation to our other techniques; abstraction
reduces overall log size by roughly 27% in our experiments.

Function GRAPHABSTRACT(Dag, sysF iles, τFile , τSock )
/* Root is always Process Vertex */

Root ← Get Root from Dag
Dag′ ← Dag.copy()
Queue.push(Root)
while Queue is not empty do

currentV ertex ← Queue.pop()
children ← currentV ertex.Children()
θfiles ← children.getFileSubtype()
θsocks ← children.getSocketSubtype()
θprocs ← children.getProcessSubtype()
θagent ← children.getAgentType()
Dag′ ← ABSTRACTACTIVITIES(Dag′ ,θprocs)
Queue.PUSH(θprocs)
Dag′ ← ABSTRACTFILES(Dag′ , sysF iles,θfiles , τFile)
Dag′ ← ABSTRACTSOCKETS(Dag′ ,θsocks , τSock )
Dag′ ← ABSTRACTAGENTS(Dag′ ,θagent)

end
/* Return Abstracted Provenance DAG */

return Dag′

Fig. 6: Pseudocode of Provenance Graph Abstraction Function. Func-
tions getFileSubtype, getSocketSubtype, getProcessSubtype,
getAgentType extract file, socket, process and agent vertices respec-
tively from children list.

E. Provenance Graph Induction

To generate a global model of worker activity, Winnower
makes use of graph grammar learning techniques. However,
graph grammars as described in Section II-C are not im-
mediately applicable to provenance graphs. Operations like
parsing and induction in prior approaches are prohibitively
costly in terms of runtime complexity [41]; this is in part
because they consider the general class of directed graphs, in
which cycles are common. More importantly, graph grammar
techniques are prone to over generalization; in the case of
data provenance, this creates the risk of erasing important
causal relations between system objects. Consider for example
the provenance of the httpd process in Figure 7. Here the
WasTriggeredBy edges encode an important series of causal
relations; However, in experimentation with past techniques
we discovered that the learning system would treat all httpd
worker activities as identical, regardless of their ancestry or
progeny. In other words, we discovered that the rich contextual
information of a provenance graph is difficult to encode as a
grammar.

To solve this problem, we adapt techniques from DFA
learning. In standard DFA learning [32], [68], the present
state of a vertex includes the path taken to reach the vertex.
We extend DFA learning to data provenance by defining the
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UID:1000

 Process name:bash 
 PID:2389

 WasControlledBy 

 Process name:httpd main  

 WasTriggeredBy 

 Process name:httpd listener 

 WasTriggeredBy 

 Process name:httpd worker 
 WasTriggeredBy 

 Socket Address:128.0.0.0/24  

 Used 

 File Path:htdocs/index.html
 Version:0 

 operation:read 

 Used 

 Socket Address:128.0.0.0/24 

 WasGeneratedBy 

 File Path:/usr/lib/libc.so 

 Used  

Fig. 7: A simplified provenance graph of an Apache webserver
serving a single user request. Past approaches to graph grammar
learning would overgeneralize this graph.

state of a vertex not only by its label, but also its prefix
state tree (τprefix) and suffix state tree (τsuffix). A vertex
v’s prefix state tree is its provenance ancestry – a subgraph
describing all the system principles and events that directly or
transitively affected by v. v’s suffix state tree is its provenance
progeny – a subgraph describing all of the system principles
and events that were in part derived or affected by v. In other
words, each system object is defined by its label, the system
entities that informed its present state, the system entities
whose state it informed. In this way, we can be sure that graph
induction will retain all causal information needed to describe
provenance of system objects. In the example shown in the
Figure 5b, ftp worker’s τprefix consist of ftp listener,
ftp, /usr/lib/libpq.so, and /etc/login.defs. Similarly, its
τsuffix consists of 192.168.0.0/24 and a summarized * file
vertex.

Pseudocode for our graph grammar induction
(INDUCTION) function is given in Figure 8, which is
MDL-based DFA learning algorithm [14]. We use MDL
principle as a guiding metric to choose the best grammar from
candidate grammars which minimizes the description cost of
the given graph (see §II-C). The algorithm is comprised by
the following two steps:

Bootstrapping. In this initial step, a given worker’s input
provenance graphs InputDags merged by adding a dummy
root vertex and joining all the InputDags’s root vertices
to the dummy root.4 A single Dag is returned after apply-
ing the CombineRoots function. Next, the prefix state tree
set τprefix and suffix state tree set τsuffix are generated
for each vertex in Dag, with the results stored in Gram.
Note that every vertex is uniquely identified by the tuple
{τprefix, τsuffix, vertexlabel}. Further, the set of these com-
binations for every vertex defines the initial (specific) graph
grammar Gram for Dag. After bootstrapping, if two vertices
are defined by the same tuple they are considered equivalent
and merged implicitly in the final grammar. For example, in the
Figure 5b, the prefix/suffix state trees of the two ftp worker
vertices are considered the same, and therefore share an entry
in Gram.

Searching. In this step, the algorithm searches for graph
grammars that improve on the naı̈ve initial specific grammar

4This step is necessary for our implementation because we make use of a
user-space provenance recorder that cannot fully track the system’s process
tree. A dummy root would not be needed if a whole-system provenance
recorder (e.g., [20]) was used instead.

Function INDUCTION(InputDags)
/* Bootstrapping Step */

Dag ← COMBINEROOTS(InputDags)
Dag ← TOPOLOGICALSORT(Dag)
Gram ← ∅
foreach vertex ∈ Dag do

τprefix ← GETPREFIXTREE(vertex)
τsuffix ← GETSUFFIXTREE(vertex)
Gram← Gram ∪ {τprefix, τsuffix, vertex.label}

end
/* Search Step */

Gramfinal ← SEARCH(Dag, Gram)
return Gramfinal

Function SEARCH(Dag, Gram)
cost ← Map from grammar to mdl cost
cost[Gram] ← MDL(Dag,Gram)
explore ← PriorityQueue()
explore.push(Gram)
while explore is not empty do

Grammin ← explore.pop()
foreach state1,state2 ∈ Grammin do

Gramnew ← MERGE(Dag, Grammin,state1,state2)
if Gramnew was not seen then

cost[Gramnew] ← MDL(Dag,Gramnew)
explore.push(Gramnew)

if terminated early then
/* Final minimum mdl cost grammar */

Gramfinal ← GETMIN(cost)
return Gramfinal

end
end
/* Final minimum mdl cost grammar */

Gramfinal ← GETMIN(cost)
return Gramfinal

Function PARSE(Dag, Gram)
Dag ← TOPOLOGICALSORT(Dag)
Gnew ← Gram.copy()
/* Go through each vertex and confirm the pairing is

acceptable */

foreach vertex ∈ Dag do
τprefix ← GETPREFIXTREE(vertex)
τsuffix ← GETSUFFIXTREE(vertex)
if not ACCEPT(Gram,τprefix,τsuffix,vertex) then

Gnew ← Gnew ∪ {τprefix, τsuffix, vertex.label}
end
/* Perform search step from induction function on Gnew */

Gramfinal ← SEARCH(Dag, Gnew)
return Gramfinal

Fig. 8: Pseudocode Graph Grammar Induction and Parsing Functions.
Functions GetPrefixTree and GetSuffixTree returns prefix and
suffix tree of input vertex respectively while Function GetMin returns
minimum cost grammar from input map.

by attempting to minimize the MDL equation 1. The MERGE
function applies a “state merging” procedure from DFA learn-
ing systems [32], [68] . The main purpose of state merging
is to find repetitive structures in the graph and combine them
in grammar. The MERGE function takes two states from the
grammar Gram and attempts to make them indistinguishable
by merging the both the τprefix trees of two selected states,
leading to the creation of a new grammar Gramnew that
remains consistent with the input Dag. Our merge function
uses an evidence driven strategy [50], which attempts to merge
every pair of states from the graph grammar to produce new
a candidate graph grammar, To support data provenance, our
MERGE function restricts merging of vertices to only those
of same type, e.g., process vertices can only be merged with

7



java (1)

java
mapper (2)

data(4)
java

reducer (3)

java (5)

java  
mapper (6)

data (8)
java

reducer (7)

java

java
mapper

datajava
reducer

State       Merging

Fig. 9: State merging applied on two chained Hadoop jobs’ prove-
nance graph. State merging combines the repetitive subgraphs.

other process vertices.

A thorough description of how state merging works is
out scope of this paper, we refer readers to [41] for detailed
explanation. For clarity, we provide a simplified example of
state merging in Figure 9 that merges the provenance of two
chained Hadoop (map/reduce) jobs. The τprefix of vertex 1
is empty {} while τprefix for vertex 5 consists of vertices
{1, 2, 3, 4}. After vertices 1 and 5 are merged, the τprefix of
5 becomes empty {}, and the τprefix of downstream vertices
are also updated to remove {1, 2, 3, 4}, e.g., vertex 8’s τprefix
changes from {1, 2, 3, 4, 5} to {5}. This makes the τprefix
of vertices 5,6,7, and 8 equivalent to the τprefix of vertices
1,2,3,4, enabling the repetitive subgraphs to be combined into
the new grammar. While here we describe state merging for
τprefix only, the process is identical for τsuffix.

The candidate graph grammars from merging step are
general as they can accept/parse more graphs than the initial
(specific) graph grammar. Then, the MDL cost of each candi-
date grammar is calculated using the MDL function according
to equation 1, and is added to the explore PriorityQueue.
Whenever a new grammar is popped from explore, the gram-
mar with the minimal MDL cost is returned. The process
of merging states and adding new grammars to explore
is repeated until either explore is empty (i.e., convergence
is achieved) or the algorithm is terminated by an external
decision such as killing the process or exceeding a time limit.
In our implementation, we set the termination point when
convergence is achieved.

F. Provenance Graph Membership Test and Update

The final component required Winnower is a membership
test that, given a grammar and an instance provenance graph,
determines whether or not the graph can be produced by the
grammar. The membership test algorithm follows naturally
from graph grammar parsing algorithms. At a high-level,
function PARSE shown in the Figure 8 takes as input a graph
Dag and a grammar Gram. Then, it generates the prefix state
tree τprefix and suffix state tree τprefix for each vertex in Dag.
This step is similar to the bootstrapping step of induction.
Finally, the algorithm determines for every vertex of given
DAG Dag whether or not its prefix tree state and suffix state
tree are present in Gram. If input tree state and output state
tree of any vertex are not present in Gram then, function
ACCEPT returns False, meaning that Dag cannot be parsed
with Gram. Note that parsing in DFA is linear time operation
due to its equivalence to regular grammars.

In Winnower, if and only if parsing fails, it is necessary
for the worker to transmit additional provenance records to the
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Fig. 10: Winnower Architecture and Workflow (§IV).

Monitor. To do so, the worker updates Gram to incorporate the
instance Dag by adding the unparsable vertices to it. It then
generates a new grammar by locally invoking the SEARCH
step of the INDUCTION function. The resulting new grammar
Gramfinal, is then transmitted to the Monitor.

IV. SYSTEM IMPLEMENTATION

We have implemented a prototype version of Winnower
for Linux OS with Docker Swarm version 1.2.6 and Docker
version 1.13. An architectural overview of the Winnower
system is shown in Figure 10. A complete workflow for
how Winnower enables auditing and attack investigation is as
follows: 1 a provenance graph for each container is generated
by the host machine using auditd; 2 a Winnower client
agent running on each worker node applies graph grammar
induction locally to produce a local model that is pushed
to the central Monitor; 3 the central Winnower Monitor
performs induction to unify the local models from all worker
nodes into a single global model, maintaining a confidence ζ
value for each vertex representing how many workers reported
each behavior, then transmits the global model back to the
worker nodes; 4 administrators can quickly view anomalous
activities (i.e., vertices with low ζ values) and decide whether
to investigate; 5 during an investigation, the administrator
can issue queries to the Winnower Monitor, or 6 request
a complete (unabstracted) copy of the workers high-fidelity
provenance graph, which is maintained on the worker nodes.
This final step is necessary to ensure that no important forensic
context is lost during the model generation.

Worker Components. Winnower requires auditd to be
enabled on all connected worker nodes, as well as SELinux5.
SVirt [58] runs each Docker container in its own SELinux
contexts if the docker daemon is started with option –selinux-
enabled. The Docker daemon generates unique SELinux la-
bels called Multi-Category Security (MCS) labels and assigns
them to each process, file, and network socket of a specific
container. Finally, Winnower workers run a modified version
of the SPADE system [37], which parses auditd logs and
generates causal dependencies in the form of OPM-compliant
provenance graphs [39], [57]. While our prototype makes use
of SPADE for ease-of-deployment, the provenance recorder
used by Winnower is largely modular and could be quickly

5SELinux is a Linux kernel feature that allows fine-grained restrictions
on application permissions. In an SELinux enabled OS, each process has an
associated context, and a set of rules define the interactions permitted between
contexts. This allows strict limits to be placed on how processes can interact
and which resources they can access.
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replaced by a kernel-level provenance recorder [20], [54], [62]
to achieve stronger security or completeness guarantees

When a system call occurs on the worker, the execution
and associated call arguments is captured by auditd based on
the rules defined in /etc/audit/audit.rules. Winnower uses
all the audit.rules to capture the syscalls events that can
be useful in attack tracing, such as process, file, and socket
manipulation. After the syscall is processed by the kernel,
auditd sends data from the kernel to the user-space daemon
which writes the event to a persistent log file. auditd writes
SELinux labels along with other event information such as
process id into the logs. To differentiate the provenance of dif-
ferent containers, Winnower extends SPADE to communicate
with the Docker Swarm and map each objects’ SELinux labels
to the associated container-id and image-id given by Docker
to find containers belonging to same applications. Winnower
then uses SPADE’s Graphviz6 backend to record container-
specific provenance graphs and performs DFA learning over
the resulting dot files.

The Winnower agent runs locally on each worker node in
the cluster and communicates with the Monitor’s Winnower
frontend. After performing graph abstraction and local induc-
tion as discussed in Sections III-D and III-E, it is responsible
for publishing local models to the Winnower frontend via a
publisher-subscriber model at a configurable interval (epoch).
We used Apache Kafka pub/sub system. The Winnower agent
also waits for instructions from the Winnower frontend related
to provenance queries, changes in epoch size, or deploy-
ing provenance policies. After each epoch t, the Winnower
performs graph grammar induction on the worker’s current
provenance graph.

Monitor Components. The Monitor node is responsible
for running the Docker Swarm manager, and is extended by
Winnower to run a frontend consisting of five submodules:
1) a Provenance Manager submodule gathers provenance
graphs from each worker node and sends back the current
globally aggregated model. 2) a Provenance Query submodule
that supports forward and backward tracing queries. The three
functions provided by Winnower to support tracing are shown
in the Table I. The user first identifies nodes of interest with the
getNodes by specifying a key-value pair (e.g., key=”name”,
value=”index.html”). These node IDs can then be passed to
the getAncestors or getDescendants functions to perform
backward and forward tracing, respectively. To track the
migration of workers in dynamic scheduling environments,
Winnower maintains a log of the scheduling decisions made
by Docker Swarm and transparently identifies which nodes to
query to reconstitute the full provenance graph. 3) a Policy
Engine submodule exposes a simple Cypher-like [13] graph
query language that permits administrators to define automated
responses when a specified property is detected within a
worker’s provenance graph. The format of policy is shown in
the Figure 11. In the MATCH clause the pattern to match is given
while RETURN will send matched vertex id to administrator to
run forward/backward queries. Figure 12 shows an example
policy. Here, if any process writes to the /usr/bin/ directory
on a worker node, the administrator will be notified. 4) finally,
a Docker API Calls submodule uses Docker Swarm API

6Available at http://www.graphviz.org/

TABLE I: Winnower API functions for attack tracing on provenance
graphs generated from graph grammars models.

getNodes(key, value) → node ids
getAncestors(node id) → graph
getDescendants(node id) → graph

MATCH vertex a:{labels} edge a
vertex b:{ labels } edge b
...

RETURN vertex a.id

Fig. 11: Format of Provenance Policy Language to check certain
provenance DAG pattern on each worker node.

MATCH (a:Process {name:"*"}) used
(b: File { file path :"/usr/bin/*", operation:"write"})

RETURN a.id

Fig. 12: Example of Provenance Policy which monitors any process
writing to /usr/bin directory.

to get information regarding containers in cluster such as
which containers belong to same information, and liveness of
containers. 5) a final component of the Winnower frontend
is the Provenance Learning submodule. After each epoch t,
the Provenance Manager fetches new provenance graph from
workers and parses them into the scala graph format using
the scalax package [3]. The Provenance Learning submodule
first checks if it already has the graph grammar model for the
worker. If there is a model previously generated then it will
be updated through induction to incorporate the new graphs
Otherwise the provenance learning system merges the worker
graph model from the current epoch into a single global model,
then sends them back to each worker. We have implemented
provenance graph grammar learning framework in Scala with
3K LOC.

V. PERFORMANCE

In order to evaluate the performance of Winnower, we
profiled 3 popular server applications on a five node cluster
using Docker Swarm. Workloads were generated for these
applications using the standard benchmarking tools Apache
Benchmark ab 7, FTPbench8, and SysBench9. The cluster
was deployed as KVM/QEMU virtual machines on a single
server running Ubuntu 16.04 LTS with 20 Intel Xeon (E5-
2630) CPUs with 64 GB RAM. One VM in the cluster acted
as the Monitor, running the Winnower Frontend and Docker
Swarm manager, while the remaining four VMs hosted worker
containers. Each VM had 2 VCPUs, 4GB RAM, and ran
CentOS 7. We deployed total 20 application containers for each
benchmark across the cluster. For each workload, the Monitor
sends 40 concurrent requests that were load balanced across
the worker nodes. Winnower was configured with an epoch
size of 50 seconds, with set τFile and τSock thresholds to 400.
To serve as a baseline comparison for Winnower, we set-up
daemons on each worker that stream auditd activity to the
Monitor node.

Our performance evaluation sets out to answer the follow-
ing questions about Winnower:

7Available at https://httpd.apache.org/docs/2.4/programs/ab.html
8Available at https://pypi.python.org/pypi/ftpbench
9Available at https://dev.mysql.com/downloads/benchmarks.html

9
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Fig. 13: Average accumulated audit log size (log scaled) on central node overtime for each application. Winnower generated audit logs (WIN)
with and without induction step for each application are substantially less than auditd/SPADE log (compressed and uncompressed).
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Fig. 14: Average time spent on graph grammar induction and parsing at each epoch, which occurred every 50 seconds.

# of Vertices # of Edges Log Size
(MB)

App Duration ASD WIN ASD WIN ASD WIN
Apache 33m12s 1.04m 32 1.04m 41 485 0.11
ProFTPD 20m12s 340k 56 340k 58 630 0.12
MySQL 21m00s 840k 61 840k 64 130 0.17

TABLE II: Summary of observed space overheads in test applications
comparing auditd/SPADE (ASD) to Winnower (WIN). Winnower
consistently reduces storage costs by over three orders of magnitude.

– §V-A: What is the overall storage reduction provided by
Winnower’ abstraction and induction techniques? To answer
this question, for each workload we compare the compressed
and uncompressed size of auditd logs to the size of our
Winnower model under two configurations: abstraction only
(WIN w/o ind.) and abstraction/induction (WIN with ind.).

– §V-B: What is the computational cost of generating a
Winnower model? To answer this question, we measure the
induction speed for each epoch in each workload.

– §V-C: What is the network cost of operating Winnower? To
answer this question, we compare the cost of transmitting
Winnower models over the network to the configuration in
which all auditd activity is streamed to the Monitor.

A. Storage Reduction

For each workload, we measured the storage requirements
at the Monitor node for both Winnower and auditd. Figure 13
shows the space overhead over time for Winnower as compared
to auditd; note that the y-axis uses a log scale. Table II pro-
vides a total summary of space overhead and graph complexity
for all three applications. The graph abstraction step (WIN
w/o ind.) accounts for only a small amount of compression

compared to graph induction, but enables the effectiveness of
induction as discussed in §III-D. Approximately 0.6 GB of data
per hour is generated by auditd/SPADE (auditd(uncomp.)) on
central node, in contrast to 150KB per hour by Winnower. With
graph induction enabled (WIN with ind.), Winnower outper-
forms auditd by 3 orders of magnitude, reducing the storage
burden by 99.9%. Even when auditd output is compressed
with 7z tool at the Monitor, Winnower still reduces the storage
burden by 99.2%. Winnower thus dramatically reduces storage
cost at the administrative node.

B. Computational Cost

For each workload, Figure 14 shows the time spent on
graph induction on each node after each 50 second epoch;
that is, each node ingested the 50 seconds of log data, then
performed the graph grammar inference algorithm (§III-E) to
generate a provenance model. We observe that induction during
the first epoch is more costly (12-26 seconds) than subse-
quent epochs (0-3 seconds). This is because a significantly
larger amount of graph structure is learned during the initial
grammatical inference, whereas in subsequent inductions the
structure of the model is quite stable and only incremental
updates occur. As we noted in §III-F that parsing is a linear
time operation we omit parsing computation cost for brevity.

Setting aside the initial induction, these results show that
the smallest safe epoch size for our current implementation
is about 5 seconds. This value represents an upper bound
on the frequency with which the provenance model can be
update. However, we are confident that smaller epochs could
be supported through optimizing our prototype. Specifically,
we are currently investigating re-implementing our induction
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Fig. 15: Network throughput (log scaled) for transmitting provenance
logs to central node over time on 3 nodes during our experiments.

algorithm as a parallelizable C/C++ program.

C. Network Activity

Finally, we profiled the network activity of Winnower
as compared to auditd for each workflow. Our results are
shown in Figure 15 for MySQL benchmark. Other application
benchmarks follow the same trend. Following the first epoch,
Winnower transmits a model that summarizes the activities of
the first 50 seconds, leading to a brief spike in network trans-
mission. It is important to acknowledge that this behavior could
lead to minor performance issues during the initial deployment
of Winnower. However, following the first epoch Winnower
visibly outperforms auditd/SPADE. Over the course of the
entire test (21 mins), Winnower transmits just 178KB of data
compared to 130MB by auditd/SPADE in the whole cluster.
Winnower thus offers dramatic improvement over auditd,
which continually transmits redundant audit data and may even
saturate network links in larger clusters.

VI. CASE STUDIES

In this section, we will demonstrate the efficacy of Win-
nower in assisting attack investigation by considering five
real-world attacks against a Docker Swarm cluster. For each
scenario, we setup the five node cluster as used in §V, with
one node acting as the Monitor and the other four acting as
worker nodes. We then ran a series of different multi-container
applications for a period of time before launching an attack. We
first generated the concise provenance model using Winnower,
then determined if it was adequate for attack investigation by
performing forward and backward tracing over the graph. To
ensure the completeness of Winnower, we also repeated each
trial using auditd/SPADE and compared the two results.

A summary of our findings is shown in Table III. In
addition to recording adequate context to explain all attack
scenarios, Winnower is also able to respond to queries in
just a handful of milliseconds, compared to hundreds of
milliseconds for auditd. Figures 16-18 visualize the models
demonstrated by Winnower in each scenario. For clarity, we
have annotated each model to draw the reader’s attention
to the attack; however, please note that the boxed subgraph
corresponds perfectly to the confidence level legend, such that
an administrator would be able to accurately interpret the graph
even without this annotation.

Log Size
(MB)

Query Resp.
Time (ms)

Scenario Duration ASD WIN ASD WIN
ImageTragick Attack 10m12s 231 0.3 103 5
Ransomware Attack 7m21s 161 0.7 102 9
Inexperienced Admin 2m40s 228 0.8 68 4
Dirty Cow Attack 4m21s 301 19 107 12
Backdoor Attack 19m31s 133 0.2 135 5

TABLE III: Summary of Winnower performance in attack scenarios.
Winnower (WIN) again reduces log size by three orders of magnitude
compared to auditd/SPADE (ASD), and improves query perfor-
mance by two orders of magnitude.

A. ImageTragick Attack

Scenario. We first consider an image manipulation webservice
that allows users to perform different operations on uploaded
images such as crop and resize. We created this webservice
with 10 Nginx webserver docker containers for sending/re-
ceiving web requests and 10 ImageMagick containers for
image manipulation. Unfortunately, the image manipulation
workers were susceptible to the ImageTragick10 attack. After
sending heterogeneous requests for some period, we initiated
the attack by uploading a malicious image file mal.jpg capable
of opening a remote shell back to the attacker’s host. The
uploaded file contained the following payload:

image over 0,0 0,0 ’https://127.0.0.1/x.php?x=‘bash -i >\&
/dev/tcp/X.X.X.X/9999 0>\&1‘’

The server executes this code when the image is processed by
the identify tool of the ImageMagick library, causing a bash
shell to be linked to the attacker’s remote host.

Nginx 
Worker

*
/etc/ImageMagick/policy.xml

/usr/lib64/libuuid.so.1.3.0

Imagemagick
Other 35

Library verticescurl
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bash
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*

bash

Fig. 16: The concise provenance graph generated by Winnower for
imagetragick attack.

Detection. Figure 16 shows the Monitor’s view of the attack as
provided by the Winnower provenance model. The provenance
graph generated by Winnower is remarkably concise, allowing
the administrator to easily spot the anomalous activities an-
notated by the dashed line (Attack Provenance). On the other
hand with the auditd/SPADE, the administrator would have
had to navigate a provenance graph of 64,811 vertices in order
to detect and investigate the attack.

10 Available at https://imagetragick.com/
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B. Ransomware Attack

Scenario. In this scenario, we consider a Ransomware attack11

against a vulnerable version (<3.2.0) of the Redis database.
The attack exploits a vulnerability that permits an attacker to
view and modify the database by executing a CONFIG command
on an open TCP port. We created an online storage service
using Nginx webserver backed by Redis-3.0.0 with sharded
database. All Redis containers had public IP assigned, but
one of service was permitted to run on a default port, which
allowed an attacker to find the vulnerable instance through
internet-wide scanning. We generated a workload for the
webservice by uploading and download content from the site,
then executed a ransomware attack: the attacker first connects
directly to Redis container over the default port, executes
the Flushall command to erase the whole database, uploads
their SSH key to the database, then obtains root access to
the container by using CONFIG to copy the database to the
root’s .ssh directory and rename it to authorized keys. After
obtaining root access, the attacker connects and leaves a note
in the home directory asking for bitcoins to get encrypted
database back.

Worker

*

/uploads/*

redis-server

x.x.x.x

Attack 
Provenance

Nginx

bash Confidence level
Legend 1 10

/root/.ssh/authorized_keys

*

172.17.0.0/24

/var/lib/redis/dump.rdb
/proc/12743/stat

/var/log/redis/redis.log

x.x.x.x

sshd

bash /root/ransomware.notevim

/dev/tty

Other library files

Fig. 17: The provenance graph generated by Winnower for ran-
somware attack.

Detection. Winnower’s utility in this scenario is two-fold.
First, as Winnower generates a concise provenance model
as shown in Figure 17, the administrator will be able to
quickly identify the malicious activity on the cluster, po-
tentially preventing the attack from spreading to the other
containers. In contrast, the raw provenance graph generated
by auditd/SPADE have 78,149 vertices. Second, by using the
complete attack provenance, the administrator will be able
to see that the database was not actually sent to internet or
encrypted, meaning that this was a fake ransomware attack
and the data was irrevocably lost.

C. Inexperienced Administrator

Scenario. In this case study, we consider the inexperienced
administrator of a Hadoop container cluster that runs analysis
jobs on different datasets 12. The admin of the cluster left the
Docker daemon REST API TCP port open to the Internet,
permitting any remote user to create and run a container in

11See https://duo.com/blog/over-18000-redis-instances-targeted-by-fake-
ransomware

12Available at https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-
yarn-site/DockerContainerExecutor.html

the cluster.13. An attacker can run a reverse TCP shell from
the container, then use the container for malicious purposes
such as DDoS attacks. In this scenario, we spawned 10 hadoop
containers executing a built-in example of distributed grep on
different datasets, then launched a reverse shell attack.

/uploads/*

Complete Attack Provenance

java

164 other .jar file 
vertices

bash
Confidence level

Legend 1 10

172.17.0.3

/tmp/hadoop-root/nm-local-dir/*

x.x.x.x

dockerd sudo

/usr/lib64/libc-2.17.so

31 other library 
file vertices 

share/hadoop/mapreduce/hadoop-
mapreduce-examples-2.6.0.jar

java

/usr/lib64/libcap.so129 other library 
files verticesjava

java

bash
Other vertices

sudo

/usr/local/hadoop/share/* 16 other java 
proceses

bash -I /dev/tcp
x.x.x.x

Inside attacker container

Fig. 18: The provenance graph generated by Winnower for inexperi-
enced administrator case study. We have simplified this diagram for
readability.

Investigation. The provenance model generated by Winnower
is shown in the Figure 18. We have simplified this diagram
for readability by making dashed line vertices for different
library/System files; regardless, the graph is concise with 319
vertices as compared to auditd/SPADE, which generated a
graph of 87,345 vertices. The administrator can easily see in
the Winnower model that one container is acting differently
than the other workers in the cluster. The admin can then run
a backward tracing query on the suspicious vertex to produce
a complete explanation of the attack, trail as annotated by blue
dashed line, to identify the open Docker port as the method of
entry.

D. Dirty Cow Attack

Scenario. In this case study, we consider an online Distributed
Continuous Integration (CI) service such as Travis CI14 or
AppVeyor15 which automatically build and test projects. Users
can provide custom scripts which install all dependencies (e.g.
maven, etc.) and build the project. These services provide
users with a terminal-like interface to view all the logging
output generated during the project’s build process. Consider
a CI service that uses Docker and spans a new container
for each build, which is the case for Travis CI. Here, the
CI administrator needs to make sure that the user is never
able to break the isolation of the container,as this would allow
them to view source code from other (possibly proprietary)
builds. However, the base image (e.g., Ubuntu, CentOS) used
by this CI service is vulnerable to the Dirty Cow privilege
escalation bug (CVE-2016-5195) 16. Since any user can upload

13See https://threatpost.com/attack-uses-docker-containers-to-hide-persist-
plant-malware/126992/

14Available at https://travis-ci.org/
15Available at https://www.appveyor.com/
16Dirty Cow Bug is a privilege escalation bug in the Linux Kernel

discovered on October 20th, 2016. It stems from a race condition in the way
that the Linux kernel’s memory subsystem handles read only private mappings
when a Copy On Write situation is triggered.
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custom bash scripts on the CI service this bug can be exploited
to escape isolation and read other users source code [6].
To setup the CI service, we created 10 Docker containers
with vulnerable base image kernels. We then ran the build
processes of different open source maven-based java projects
from Github. During one of the builds, we executed a Dirty
Cow attack script from [8].

MATCH (a:Agent {UID="0"}) WasControlledBy
(a: Process {name:"/bin/sh"})

Fig. 19: Provenance Policy which will be deployed on each worker
node in the cluster to monitor container breakout attacks.

Monitoring. As it is possible to express a breach of container
isolation in policy language, this scenario shows Winnower’s
utility to as an active monitoring tool in addition to an
administrative aid. As there is no condition under which a
container should interact with system objects outside of the
container, the administrator can define a provenance policy on
each worker node like the one shown in Figure 19. This policy
is matched when there is some /bin/sh process controlled
by UID 0. If the policy is triggered at runtime, a notification
is sent to the administrator. Once the administrator has been
notified they can run backward tracing query on the bash vertex
to reconstruct the attack, which will aid in identifying the
vulnerable base image. One might argue that the CI service
could block all ports by using SELinux to stop such behaviour;
however, CI services cannot do that because they provide
software testing services that may require access to these ports.
In this attack scenario, since each container in the cluster
was building a different project, Winnower does not provide
a significant decrease in log size, as shown in Table III. In
order for Winnower to work as a compression mechanism, it
would be necessary to maintain a separate provenance model
for each project, which would eliminate audit redundancy over
sequential builds.

E. Backdoor attack.

We describe this attack in §II-B, and visualize the concise
provenance model in Figure 3b. Our results compared to the
auditd/SPADE are shown in the Table III.

VII. RELATED WORK

In §II-B we described the limitations with existing prove-
nance collection tools that Winnower addresses, and comple-
ment the discussion on related work here.

System-level Provenance. To the best of our knowledge, this
is the first work to study an efficient system-level provenance
collection mechanism for clusters and solved the challenges
associated with it. However, in recent years’ a significant
progress has been made to capture system-level provenance
and leverage them for forensics [47], [48], [62], [46], [20],
[61], [37]. Winnower complements all these OS-level logging
systems. However, using existing system logs accumulate very
quickly; which makes them impractical to collect and query
logs for the scale of clusters. Winnower apply novel graph
grammars approach which substantially reduces the cost of
storing and processing logs. LogGC [52] provides offline
techniques to garbage collect redundant events which have
no forensic value. These techniques can be applied alongside

(a)

false
alarm

evidence
of attack

false alarm

false
alarm

(b)

Fig. 20: Provenance of two httpd server executions. (a) shows
normal execution, but execution (b) shows evidence of attack. Com-
paring these provenance graphs with existing techniques leads to false
alarms, a limitation that we address with Winnower.

our model construction to further decrease storage overheads.
Finally, our work also complements the execution partitioning
systems such as BEEP/ProTracer/MPI [51], [54], [53] which
improve post-mortem analysis by solving the problem of
dependency explosion.

Distributed System Tracing. Existing academic tools [55],
[65], [33], [17] and commercial tools [12], [11] on distributed
system tracing are mainly targeted towards runtime profiling,
finding limping hardware and software misconfigurations. Pin-
point [29] collects execution traces as paths through the system
and diagnose anomalies by generating a probabilistic context-
free grammar from the paths. However, these systems do not
provide causal relationships between kernel-level events which
is necessary for security auditing and forensics. Moreover, they
also suffer from the challenges of log storage/transmission
overhead on central node which are outlined in §II-B.

Graph Comparison Techniques. Winnower leverages graph
comparison techniques to identify similarities and differences
between provenance graphs across different executions. Graph
comparison algorithms accept two graphs G and G′ as in-
put and output a value quantifying the similarity/difference
between these two input graphs [63], [42], [24]. For our
purposes, existing graph comparisons solutions are not imme-
diately applicable, in part because of various sources of non-
determinism lead to subtle structural and semantic variations
between provenance graphs across executions. To illustrate this
limitation, we note briefly a preliminary experiment that we
conducted using naı̈ve graph diff in place of DFA learning.
Figure 20 shows simplified provenance graphs for two Apache
httpd webservers, one of which (20b) has fallen victim to a
a reverse shell invocation attack. The naive graph diff flagged
several subgraphs as anomalous, although they described the
same behavior in both executions. In contrast, Winnower
accurately identifies the attack subgraph without false alarms.

Previous studies have used graph grammar techniques
to to infer program behavior and specifications [43], [31]
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using syscall and function call graphs. Babic et al. [15]
used induction on tree grammar to learn malicious syscall
patterns which they hoped to recognize at runtime. One of
the prominent works in the graph grammar learning space is
Jonyer et al. [44] SubDue system that generates context free
grammars to help solve Frequent Subgraph Mining. In light of
the high overheads associated with DFA learning, Winnower
considers a significantly more challenging problem of how to
leverage these techniques in a real time distributed monitoring
architecture. Moreover, we also demonstrate methods of ab-
stracting instance-specific details out of audit records to further
improve the compression rate of graph induction.

Deduplication and Compression. Our work is orthogonal
to provenance graph compression and deduplication tech-
niques [70], [25], [16] due to distributed setting of system-level
provenance in our work. Winnower provides scalable compres-
sion using DFA learning that exploits the homogeneity present
in same applications’ provenance across different executions to
remove redundancy and generate DFA models. Moreover, DFA
models provide an efficient means of membership test which
is leveraged by Winnower to avoid redundant transmission of
provenance data to the central node. In contrast, deduplica-
tion and compression techniques do not provide these func-
tionalities. Recently, Chen et al. [28] proposed equivalence-
based provenance tree compression to reduce storage overhead.
However, their proposal requires distributed applications to be
written in a new domain-specific language to find equivalent
trees at compile time and works only for network provenance
trees.

VIII. DISCUSSION

Our techniques of graph abstraction and DFA learning for
system-level provenance are generic; they can be employed in
other domains in which there is redundancy across executions,
such as multiple VMs or independent process executions
as we do not make any assumptions regarding application
and their workloads. We focus on container clusters in this
paper because these techniques are ideal for environments
that adhere to the microservice architecture principle (software
as discrete, loosely-coupled, replicated services for scalability
and fault-tolerance) and there is a recent paradigm shift in
industry towards using Docker containers in the clusters due
it advantages over hypervisor-based VMs [34].

Our framework is extensible to Kubernetes [2], another
popular container cluster management tool. The only submod-
ule from our architecture (§IV) that needs to be changed is
the Docker API call stack (consist of 150 LoC) which polls
Docker Swarm for different operations such checking container
liveness and finding containers belong to same application.
Moreover, Kubernetes also allows to create containers with
SELinux labels by defining seLinuxOptions field in container
manifest file.

Currently, auditd does not provide any straightforward
means to generate container-aware logs [9]. There are two
obvious choices available to separate log messages based on
the container that generated the message. The first is SELinux
labels which we are using in this project. The second is user
namespace mapping which allocates a unique uids to each
container. Currently, Docker does not support a daemon-wide

user namespace mapping feature i.e. it gives each container
the same user namespace mapping using the --userns-remap
option. In the future, when Docker supports container-wide
user namespace mapping, it will be easy to port Winnower
to use the uid field in the event message. This will enable
Winnower to be used for any Linux distribution, not just for
SELinux enabled distributions.

IX. CONCLUSION

In this work, we present Winnower, the first practical
system for end-to-end provenance-based auditing of clusters
at scale. Winnower includes a novel adaptation of graph ab-
straction techniques that removes instance-specific information
from the system-level provenance graphs and further apply
graph grammar principles that enables efficient behavioural
modeling and comparison in the provenance domain. We
evaluated Winnower performance on cluster applications and
five real-world attack scenarios and show that Winnower
reduces storage and network overheads by several orders of
magnitude compared with existing solutions, while preserving
the necessary context to identify and investigate system attacks.

AVAILABILITY

The Winnower codebase will be released upon publication.
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